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Abstract

Background: Detecting and controlling the movements of invasive species, such as insect pests, relies upon rapid and
accurate species identification in order to initiate containment procedures by the appropriate authorities. Many species in
the tussock moth genus Lymantria are significant forestry pests, including the gypsy moth Lymantria dispar L., and
consequently have been a focus for the development of molecular diagnostic tools to assist in identifying species and
source populations. In this study we expand the taxonomic and geographic coverage of the DNA barcode reference library,
and further test the utility of this diagnostic method, both for species/subspecies assignment and for determination of
geographic provenance of populations.

Methodology/Principal Findings: Cytochrome oxidase I (COI) barcodes were obtained from 518 individuals and 36 species
of Lymantria, including sequences assembled and generated from previous studies, vouchered material in public
collections, and intercepted specimens obtained from surveillance programs in Canada. A maximum likelihood tree was
constructed, revealing high bootstrap support for 90% of species clusters. Bayesian species assignment was also tested, and
resulted in correct assignment to species and subspecies in all instances. The performance of barcoding was also compared
against the commonly employed NB restriction digest system (also based on COI); while the latter is informative for
discriminating gypsy moth subspecies, COI barcode sequences provide greater resolution and generality by encompassing
a greater number of haplotypes across all Lymantria species, none shared between species.

Conclusions/Significance: This study demonstrates the efficacy of DNA barcodes for diagnosing species of Lymantria and
reinforces the view that the approach is an under-utilized resource with substantial potential for biosecurity and
surveillance. Biomonitoring agencies currently employing the NB restriction digest system would gather more information
by transitioning to the use of DNA barcoding, a change which could be made relatively seamlessly as the same gene region
underlies both protocols.
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Introduction

Non-indigenous insects and the pathogens they harbour have an

overwhelming ecological, socio-economic, and evolutionary im-

pact on the forest ecosystems they invade [1–6]. The rapid

initiation of containment and eradication programs is imperative

to prevent the establishment and spread of adventive populations

or individuals, which in turn relies on early detection and accurate

identification of non-indigenous species as they enter a new region

[7]. Surveillance and monitoring at or near sites considered high

risk (e.g. ports, airports, cargo facilities) serve this function, but

current practices have proven insufficient, as evidenced by the

alarming increase in non-indigenous insect establishments in

recent decades [8]. Species identification in particular is a

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e14280



vulnerable step, as suggested by studies documenting the

identification rate of port interceptions (e.g. 40–100% incomplete

identifications across families of Coleoptera [9]).

To aid in the inherently difficult task of species identification for

biosecurity, several molecular approaches are described in the

recent standard released by the International Plant Protection

Convention on the diagnostic protocols for regulated pests [10]. In

contrast to the many ad-hoc protocols recognized in this standard

(e.g. allozymes, restriction/amplified fragment length polymor-

phism analysis, microsatellites—techniques are reviewed in [11]),

DNA barcoding provides a standardized and generic platform

while still meeting and exceeding the rigorous standards of data

quality and transparency (reviewed by [12]). Several studies

demonstrate the efficacy of the approach as applied to invasive

species detection and determination of native provenance,

including work on leeches [13], agromyzid leafminers [14],

tephritid fruit flies [15,16], ants [17], siricid wasps [18], true bugs

[19], the cactus moth [20], the European poplar shoot borer [21],

and nocturnal moths [22]. The integration of DNA barcoding into

national biosurveillance programs has been protracted, but

acceptance by certain agencies is apparent (e.g. see LBAM ID,

which incorporates barcoding into the diagnostics of light brown

apple moth and related species in California [23].

The tussock moth genus Lymantria L. (Lepidoptera: Noctuoidea:

Lymantriinae) has been the focus of numerous investigations of

molecular diagnostic tools, predominantly on Lymantria dispar L. to

separate the North American, European and Asian gypsy moth

populations (e.g. [24–32]). The intensity of research effort is

certainly warranted – few groups of insects rival the tussock moths

in number of undesirable, potentially invasive species and the

destruction they wreak on both native and non-native forests. This

invasive potential is the product of several undesirable life history

traits including long overwintering period in the egg stage,

polyphagy in the larval stage, attraction of adults to artificial light

sources (e.g. of ports and cargo vessels), and oviposition by females

on inanimate surfaces [32–34]. Invasive species identification for

this group is complicated by the propensity for immatures to be

the stage of translocation, providing few characters for morpho-

logical diagnosis. Furthermore, when the adults are targeted, as is

the case with traps employing synthetic sex pheromone attractants,

lures may inadvertently attract more then one species (e.g. [35]),

and individuals may be severely damaged by the trapping

mechanism (e.g. sticky traps; see Figure 1).

Two previous studies [15,36] initiated a DNA barcode library

for Lymantria (and other tussock moth genera) and results suggested

potential for biosurveillance and species identification. The present

study builds upon this solid foundation, to further populate the

library with additional species, test that its utility remains with

comprehensive sampling within species, and employ the reference

library to assign intercepted specimens from quarantine and

monitoring programs in British Columbia, Canada. In addition,

we compare the DNA barcoding approach to a diagnostic assay

based on the same gene region, herein called the ‘NB system’,

routinely-used in surveillance programs to assess the gross

geographic provenance of Lymantria dispar [24,26], and suggest a

simple transition for monitoring programs to adopt the barcoding

approach with its improved reliability and resolution.

Materials and Methods

An effort was made to expand the taxonomic and geographic

coverage of the DNA barcode library for the tussock moth genus

Lymantria, with particular attention to those at high risk of being

transported in cargo or on vessels to new habitats where they could

become invasive pests, recently reviewed by Pogue and Schaefer

[34]. We followed the taxonomy of [34] and [37], with the

exceptions of L. nebulosa Wileman and L. subpallida Okano, which

are considered here as species (see Appendix S1 for taxonomic

treatment), and identifications were determined using these

monographs. Samples and sequences were obtained from four

Figure 1. Collection of specimens through a pheromone-based gypsy moth surveillance program. A, Pheromone trap and B, trapped
and damaged Lymantria dispar specimen (LMHRG001-06) (image A from USDA APHIS PPQ Archive, USDA APHIS PPQ, Bugwood.org).
doi:10.1371/journal.pone.0014280.g001
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sources. Firstly, sequences were obtained from several previous

studies that analyzed all or part of the barcode region: Armstrong

& Ball [15] (N = 76), Ball & Armstrong [36] (5), Bogdanowicz et al.

[26] (74), Hebert et al. [38] (12), and Yamaguchi et al.

unpublished (8). Secondly, 146 samples were analysed from

vouchered material in publicly accessible collections, namely the

Agricultural Scientific Collections Trust (ASCT, New South

Wales, Australia), Biodiversity Institute of Ontario (Guelph,

Canada), Pacific Forestry Centre (Victoria, Canada), Smithsonian

National Museum of Natural History (Washington D.C., United

States), and University of Maryland Alcohol Tubes of Lepidoptera

collection (College Park). Thirdly, 165 specimens were analyzed

from the USDA Forest Service Northern Research Station

(Hamden, United States) which included representatives from all

46 populations of Lymantria dispar analyzed in Keena et al. [32].

Finally, 32 specimens were acquired from surveillance programs in

British Columbia, Canada. Thirty of these specimens were

collected in sticky traps baited with L. dispar pheromone

(Figure 1) around the province during 2006 and 2009 and two

individuals were reared from egg masses removed from a Russian

cargo vessel in the port of Vancouver in 1992.

DNA extraction, amplification, and sequencing of the barcode

region of the mitochondrial cytochrome oxidase I (COI) gene

followed standard high-throughput DNA barcoding methods

previously described [38,40]. The primers LepF1 and LepR1

[41] were used in most instances, but amplification and sequencing

using the ‘Lep mini primers’ (MLepF1, MLepR1) [42] was

necessary for a few older specimens. Molecular work performed in

Australia used the COI primers and amplification methods

described in Cho et al. [43]. All sequences are publicly available

from the Barcode of Life Data Systems (BOLD) (www.boldsystems.

org; [44]; project ‘Global Lymantria’ [GLYMA]) and GenBank

(see Table S1 for accession numbers). The 658 base pair (bp)

barcode region encompasses 360 of the 378 bp amplicon and

the two restriction enzyme sites of the ‘NB system’ of Bog-

danowicz et al. [24] that is routinely used for gypsy moth

diagnostics (Figure 2). The four possible haplotypes in this sys-

tem are N+B+, N2B+, N+B2, and N2B2, where presence (+)

or absence (2) is indicated for the NlaIII and BamHI restriction

sites (Table 1).

To explore the utility of the barcode region for species diagnosis

in Lymantria, a maximum likelihood tree was constructed in Garli

1.0 [45], using the best-fit model as determined by ModelTest 3.7

[46] under the Akaike Information Criterion. The general-time-

reversible substitution model was chosen, with among-site-rate-

heterogeneity modeled according to a gamma distribution, and an

estimated proportion of DNA sites invariant. Analysis used default

settings with Orgyia antiqua (BOLD ProcessID XAG647-05,

GenBank Accession GU091296) included as an outgroup; node

supports were estimated using 100 bootstrap replicates. The levels

of genetic variation within and between species were calculated in

MEGA 4 [47] using pairwise Kimura 2-parameter (K2P) distances

[48] and the pairwise deletion option. The number of morpho-

logically defined species that could successfully be differentiated by

DNA barcoding were tallied to determine an overall success rate.

Successful differentiation of a species required that its barcodes

formed monophyletic clusters and were not shared with other

species; in the case of species with a single representative, only the

latter criterion was necessary.

To investigate subspecies delimitation in Lymantria dispar using

the COI gene, we parsed the dataset to the 244 sequences

.600 bp. Removing the significant sequence length variation

permitted the use the more rapid neighbour-joining (NJ) method.

The NJ tree was constructed in MEGA 4 with K2P distances and

the pairwise deletion option (and resulted in a near-identical

topology to an ML analysis; data not shown). Specimens were

classified to subspecies based on the distribution limits provided by

Pogue and Schaefer [34] where sufficient locality data were

available.

For both the species and subspecies level, Bayesian assignment

tests were performed using the ‘segregating sites’ algorithm of

Abdo and Golding [49] (see also [48]). For all species with three or

more individuals, one randomly-chosen COI sequence was

removed from the dataset and used as the query sequence for

the test, as in Taveres and Baker [51]. This procedure was

subsequently repeated for all haplotypes of the 32 surveillance

specimens. The number of segregating sites, the posterior

probability of correct assignment, and the risk of mis-assignment

were calculated with the program Assigner (available at http://

info.mcmaster.ca/TheAssigner/; [49]). The assignment of species

and subspecies (and potential for determining geographic

provenance and female flight ability) with the COI barcode

region was compared against the commonly employed ‘NB

system’ [24].

Figure 2. Barcode region of the cytochrome oxidase I (COI) gene. The barcode region spans 658 base pairs near to the 59 end of the COI
gene and includes the two diagnostic restriction enzyme sites of the ‘NB system’ of Bogdanowicz et al. [24], referred to as N and B. An additional
monomorphic NlaIII site is found in the 59 region of the gene fragment and therefore a NlaIII enzyme digest of the barcode region would result in two
(N2) or three (N+) bands (instead of 1 or 2 bands).
doi:10.1371/journal.pone.0014280.g002
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Results

COI barcodes were obtained from 518 individuals and 36

species of Lymantria, originating from 35 countries (Table S1).

Sixteen species were represented by a single sample sequence

while the remaining species ranged from 2 to 308 sequences (mean

excluding L. dispar = 5.8 sequences/species). The average

sequence length was 597 bp despite several shorter sequences

obtained from previous studies (e.g. sequences from [26] are 375–

378 bp). Four species (L. singapura, L. semperi, L. todara, and L.

subrosea) had sequences shorter than half the barcode region due to

specimen age and/or preservation. There was no evidence of

insertions, deletions or stop codons detected, suggesting pseudo-

genes were absent from the dataset.

The ML tree for the 36 species revealed long branches between

the terminal clusters of closely related haplotypes (Figure 3, Figure

S1). In only one case did a terminal cluster not correspond to known

species limits: L. sinica (n = 3) was paraphyletic with respect to the

single specimen of L. nebulosa, with the deep split in L. sinica equalling

2.9% K2P sequence divergence (LYMAN070-08, locality: China

split from LYMAN065-08 & LYMAN066-08, locality: Taiwan).

Eighteen of the 20 species clusters with multiple individuals had

high bootstrap support (.80%); the remaining two species, L.

umbrosa and L. dispar, considered conspecific until recently [34] and

respond to the same pheromone lure [35], had bootstrap support of

69% and ,50%, respectively. The mean K2P sequence divergence

between species (x = 14.02%; SD = 3.47%; range = 2.68–37.61%)

was approximately 21-fold higher than within species variation

(0.66%; SD = 0.50%; range = 0–3.38%) and formed mostly

disjunct distributions (Figure 4). Only 157 of 50,390 intraspecific

comparisons and 2 of 630 interspecific comparisons fell within a

small range of overlap, between 2 and 4%. The former cases

involved L. mathura, L. sinica, L. obfuscata, and L. dispar (only those

comparisons involving one or two short GenBank sequences) and

the latter involved the pairs L. dispar/umbrosa and L. xylina/schaeferi.

Overall, DNA barcoding was able to successfully differentiate 35 of

36 (97.2%) morphologically defined species.

The NJ tree of COI sequence divergences in L. dispar indicated a

clear delineation between the L. d. dispar subspecies and the two

Asian subspecies asiatica and japonica (Figure 5). The tree also

revealed all North American L. d. dispar individuals clustered

together along with two sequences from France (LYMMK049-09,

LYMMK054-09). The 32 specimens caught in surveillance

programs in British Columbia, Canada comprised four COI

haplotypes. Two of these haplotypes clustered within the North

American L. d. dispar, while the other two clustered in the asiatica/

japonica group—in all 32 cases, there is perfect correspondence

with the subspecies designations deduced from morphology and

the origin/pathway of introduction.

The tests of assignment in a Bayesian statistical framework

resulted in correct assignment to species and subspecies in all

instances (Table 2). The posterior probabilities of assignment for

most species were high, and the risks of mis-assignment were low.

The assignment of surveillance specimens to L. dispar and their

respective subspecies displayed substantially lower posterior

probabilities and higher risks, likely a product of the close

association of L. dispar with L. umbrosa, as well as the

nonmonophyly of L. d. asiatica and japonica.

The haplotypes of the ‘NB system’ were inferred based on the

COI sequence present at the two restriction sites (Table S1)

rather than by restriction endonuclease digests. As in Keena et al.

[32], the three haplotypes N+B+, N2B2 and N+B2 were

present in L. dispar. All 3 haplotypes were also found in at least

one other species—one species possessed N+B+, five species with

N2B2, and 16 species scored as N+B2. Currently it is unclear

exactly which species will generate a COI amplicon with the

primers of Bogdanowicz et al. [24,27], but previous work has

successfully assayed L. albescens (L. dispar albescens in [26]), L.

umbrosa (L. dispar hokkaidoensis in [27]), and L. monacha (LMH,

unpublished data of male from Russian Far East trapped in

greater Vancouver, Canada in 1992). This suggests that

misidentification of species prior to the ‘NB system’ assay could

have serious ramifications. For example, the heavily regulated

nun moth (L. monacha), if captured in North America and

inadvertently assayed as L. dispar, would be determined to possess

the N+B2 haplotype (Table S1), and mistakenly diagnosed as

European gypsy moth, L. dispar dispar. In respect to tracing

geographic origins, the 3 NB haplotype states remain mostly

informative as originally characterized [24], but with limited

resolution and outliers that could also be misleading (e.g.

BOGDA004-08, from Ontario, Canada has the N+B2 haplotype

characteristic of Europe).

In contrast, the COI sequence data consisted of 91 haplotypes

within L. dispar and 142 haplotypes across all species, none of

which were shared between species. Moreover, the haplotype data

recovered clusters of L. d. dispar, North American L. d. dispar, and

L. d. asiatica/japonica. The presence of multiple barcode-determined

haplotypes in several regions (e.g. 6 haplotypes from 7 individuals

in the Indre-et-Loire department of France; 5 haplotypes from 9

individuals from the Ticino Canton in Switzerland) suggests the

potential for determining the native provenance (and associated

traits such as female flight ability) by analyzing haplotype

frequencies across the native and introduced range (e.g.

[20,52,19]). Such analyses may be compromised if human-

associated movement has altered haplotype frequencies in the

native populations, but this potential exists for all methods tracing

source populations. Although the sampling density in the present

study was not adequate for these analyses, the presence of two

haplotypes from France which clustered within the North

American L. d. dispar is consistent with the well-documented

introduction of the species in 19th century Massachusetts by

Leopold Trouvelot [53].

Table 1. Key to the ‘NB system’ routinely used for gypsy moth diagnostics.

Fragment size after NlaIII (N) enzyme digest Fragment size after BamHI (B) enzyme digest NB haplotype

,350 bp ,400 bp N+ B2

,350 bp ,360 bp N+ B+

,400 bp ,400 bp N2 B2

,400 bp ,360 bp N2 B+

The two diagnostic restriction enzyme digests of Bogdanowicz et al. [24] can result in the four haplotypes listed.
doi:10.1371/journal.pone.0014280.t001
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Figure 3. Maximum likelihood tree for 36 species of Lymantria. Tree was constructed with the barcode region of the COI gene for 518
individuals. The number of specimens collapsed into a single node is given in parentheses after the taxon name. Bootstrap support values .50% are
listed above the corresponding node. Width of the triangles represents the sequence divergence within the cluster. Refer to Figure S1 for full tree.
doi:10.1371/journal.pone.0014280.g003
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Discussion

This study has clearly demonstrated the efficacy of DNA

barcodes for diagnosing species of Lymantria and has reinforced the

view that the approach has substantial potential for biosecurity

and surveillance [12]. The minimal overlap between mean intra-

and interspecific variation resulted in well-supported, cohesive

clusters of sequences corresponding with named species. In only

one case—the paraphyly of L. sinica relative to L. nebulosa—did the

COI barcodes fail to correctly distinguish a species, providing a

success rate of 97.2% among 36 morphologically defined Lymantria

species. This high success rate is comparable to three recent

barcode studies of Lepidoptera: 100% success observed in a

temperate, local study of 190 species [22]; 97.9% in a tropical,

regional study of 521 species [42]; and 99.3% in a temperate,

continental study of 1,327 species [38].

It remains possible that the deep split in L. sinica is genuine and

reflects the allopatric divergence between the nominal species and

a misidentified or undescribed species, or that L. sinica has

maintained a deep COI polymorphism following its divergence

from L. nebulosa. In any case, further investigation is warranted.

Interestingly, a deep COI divergence revealed within L. mathura in

the study of Ball and Armstrong [36] pointed to a possible cryptic

species L. flavida by Pogue and Schaefer [34], explaining previously

mixed responses to a synthetic pheromone lure. Likewise, our

preliminary COI data identified a deep divergence within L.

mathura, which led us to revise the status of L. subpallida (previously

synonymized by [37]; see Appendix S1).

In addition to these instances of deep divergence, there are two

pairs of species which show ,2% sequence divergence. L. dispar

and L. umbrosa were recognized as separate species by Pogue and

Schaefer [34], contra Schintlmeister [37], based in large part on

the DNA barcoding study of Ball and Armstrong [36], and their

distributions, with L. umbrosa confined to the northern part of

Hokkaido, Japan. L. xylina and L. schaeferi also show ,2% sequence

divergence, and again recent taxonomic studies disagree on their

species status: [34] treated L. xylina from mainland China, Taiwan

and Japan as conspecific but [37] described the Chinese

populations as a new species, L. schaeferi. Our data confirms that

these taxa are closely related, but given that we have sampled just

a single specimen of the latter species, more data are needed to

resolve this question. All these cases illustrate that DNA barcoding

provides secondary benefits to biosecurity applications—taxonom-

ic insights and implications for detection and monitoring in the

field. It also validates a fundamental practice in barcoding

projects, the retention of voucher specimens [12], to facilitate

future taxonomic examination and to avoid the proliferation of

incorrect identifications or ‘error cascades’ [54].

The positive results of the species and sub-species assignment

tests, calculated for both reference and surveillance specimens,

demonstrates the future potential for the application of DNA

barcoding to biosecurity. An actively curated and validated

reference library is queried with the DNA barcode obtained from

a surveillance or quarantine specimen; within a robust statistical

framework, species assignments are calculated along with

measures of confidence; where sufficient coverage exists, addition-

al assignments are computed (e.g. subspecies identification, native

provenance, characteristics related to invasiveness), which can be

corroborated with additional markers; voucher specimens are

retained to facilitate morphological confirmation and future

taxonomic enquiry. While the scaffold is in place for this at the

present time (i.e. BOLD [44]), further benchmarking of statistical

assignment programs is necessary (e.g. [50]), as is the continued

construction and maintenance of reference barcode libraries. For

the latter, participation by multiple national biosecurity research

and monitoring programs is imperative.

To this end, our comparison of the commonly used ‘NB system’

[24] with the COI barcode approach clearly indicates that higher

resolution and generality would be achieved by Lymantria

monitoring programs should they adopt DNA barcoding. We

have demonstrated instances when the ‘NB system’ would provide

misleading results that could have serious consequences, whereas

COI barcodes provide reliable subspecies and broad geographic

Figure 4. Combined histograms of pairwise Kimura 2-Parameter (K2P) sequence variation. Blue vertical bars show intraspecific
divergences for the 20 species of Lymantria with multiple individuals and green vertical bars show the interspecific divergences between all 36
species.
doi:10.1371/journal.pone.0014280.g004
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Figure 5. Neighbour-joining tree of the gypsy moth Lymantria dispar. Tree was constructed with 244 sequences of the COI barcode region.
BOLD process IDs and collection localities are provided for each sequence. Surveillance specimens are denoted by a moth symbol.
doi:10.1371/journal.pone.0014280.g005
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Table 2. Assignment of random and surveillance individuals to species and sub-species.

Query Query taxon Process ID No. of individuals No. of diagnostic sites Posterior probability Risk

species L. mathura LYMAN019 26 14 0.998 3.2961025

L. monacha LYMMK174 58 13 0.974 2.7561024

L. antennata LYMAN174 3 5 0.987 6.0961025

L. sinica LYMAN066 3 11 0.997 8.7361025

L. obfuscata LYMAN074 8 13 0.897 2.8661023

L. dissoluta LYMAN055 3 2 0.960 1.2161024

L. subpallida LYMAN025 3 2 0.992 3.8761025

L. bantaizana GBGL1580 4 2 0.986 1.0961024

L. lucescens GBGL1613 4 0 0.994 0

L. atemeles LYMAN042 5 3 0.984 4.7361025

L. xylina GBGL1587 5 5 0.85 9.1461024

L. flavida LYMAN028 6 6 0.983 1.2561024

L. fumida GBGL1589 6 1 0.993 9.9261026

L. plumbalis LYMAN108 9 0 0.998 0

L. albescens LYMAN033 13 5 0.697 1.8561023

L. umbrosa LYMMK095 21 12 0.572 3.2661023

surveillance -
species

L. dispar LMHRG001 308 49 0.727 3.3561023

L. dispar LMHRG008 308 49 0.766 3.2361023

L. dispar LBCH7981 308 49 0.694 5.1761023

L. dispar LYMMK013 308 49 0.694 5.1761023

surveillance -
subspecies

L. d. dispar LMHRG001 203 29 0.593 3.1061023

L. d. dispar LMHRG008 203 29 0.656 3.1561023

L. d. asiatica LBCH7981 54 6 0.462 3.2861023

L. d. asiatica LYMMK013 54 2 0.302 1.0661023

Provided are the three query types, query taxon and Process ID assigned, number of individuals in query taxon, diagnostic sites, posterior probability of correct
assignment, and risk of mis-assignment.
doi:10.1371/journal.pone.0014280.t002

Figure 6. Simulated gel electrophoresis for two restriction fragment length polymorphism assays. The barcode region assay amplifies a
,690 bp fragment, whereas the Bogdanowicz et al [24] assay amplifies ,380 bp. The presence (+) or absence (2) of the NlaIII and BamHI restriction
sites are provided for each assay, as described in the text. The digest and electrophoresis simulations were performed with New England BioLabs
NEBcutter V2.0 (http://tools.neb.com/NEBcutter2).
doi:10.1371/journal.pone.0014280.g006
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information. Moreover, recent studies (e.g. [20,52,19]) indicate

that higher sampling density should allow more precise tracing of

source populations, which in turn will predict female flight ability,

the key trait of interest [32]. Because the same COI gene region

underlies both approaches, the transition for monitoring agencies

could be seamless. Instead of amplifying the 378 bp fragment of

Bogdanowicz et al. [24], the 658 bp barcode region could be

amplified with the near-universal LepF1/LepR1 primers [41].

Assays of the NlaIII and BamHI enzyme digests could continue to

be performed, producing slightly different banding patterns

(Figure 6), but providing a rapid initial assessment as with the

‘NB system’. The amplicon could then be sequenced for definitive

species and broad geographic information. The increased

sampling density would continually develop a baseline from which

progressively finer levels of information could be gleaned, then

confirmed by other marker systems (e.g. FS1 [28] or microsatellites

[24]) when necessary.

Conclusion
In this study we have shown that DNA barcoding is an effective

tool for discriminating species of Lymantria. Furthermore, our

comparison of this system against the NB restriction digest

system—commonly employed at present by biomonitoring

agencies for this purpose—suggests that the informational value

provided by barcoding (species resolution, general applicability) is

significantly greater. DNA barcoding also has the potential to

provide novel taxonomic insights, facilitated by its rigorous

standards of record-keeping and permanent archiving of voucher

specimens. As the DNA barcode reference library continues to

increase in coverage, both for Lymantria and other taxa of

international regulatory concern, its utility as part of a diagnos-

tic/monitoring system will continue to expand.

Supporting Information

Appendix S1 Taxonomic treatment of Lymantria nebulosa Wile-

man, revised status and Lymantria subpallida Okano, revised status.

Found at: doi:10.1371/journal.pone.0014280.s001 (9.23 MB

PDF)

Figure S1 Complete maximum likelihood tree for 36 species of

Lymantria. Full tree from Figure 3 displaying haplotype variation

within species clusters. BOLD process IDs and collection localities

are provided for each sequence. Tree was rooted with the

outgroup Orgyia antiqua.

Found at: doi:10.1371/journal.pone.0014280.s002 (0.02 MB

PDF)

Table S1 Taxonomic samples used in study, including Barcode

of Life Database (BOLD) and GenBank accessions. Also listed is

the presence (+) or absence (-) of the NlaIII (N) and BamHI (B)

restriction enzyme sites of the ‘NB system’ [24], determined from

the sequence data (i.e. not by performing the assay).

Found at: doi:10.1371/journal.pone.0014280.s003 (0.16 MB

PDF)
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