Biological identifications through DNA barcodes: the case of the Crustacea

Filipe O. Costa, Jeremy R. deWaard, James Boutillier, Sujeevan Ratnasingham, Robert T. Dooh, Mehrdad Hajibabaei, and Paul D.N. Hebert

Abstract: The ability of a 650 base pair section of the mitochondrial cytochrome c oxidase I (COI) gene to provide species-level identifications has been demonstrated for large taxonomic assemblages of animals such as insects, birds, and fishes, but not for the subphylum Crustacea, one of the most diverse groups of arthropods. In this study, we test the ability of COI to provide identifications in this group, examining two disparate levels in the taxonomic hierarchy — orders and species. The first phase of our study involved the development of a sequence profile for 23 dominant crustacean orders, based upon the analysis of 150 species, each belonging to a different family. The COI amino acid data placed these taxa into cohesive assemblages whose membership coincided with currently accepted boundaries at the order, superorder, and subclass levels. Species-level resolution was subsequently examined in an assemblage of Decapoda and in representatives of the genera *Daphnia* (Cladocera) and *Gammarus* (Amphipoda). These studies revealed that levels of nucleotide sequence divergence were from 19 to 48 times greater between congeneric species than between individuals of a species. We conclude that sequence variation in the COI barcode region will be very effective for discriminating species of Crustacea.

Résumé : Il a été démontré que l'utilisation d'une section de 650 paires de bases du gène mitochondrial de la cytochrome *c* oxydase I (COI) permet de faire des identifications au niveau spécifique de grands ensembles taxonomiques d'animaux tels que les insectes, les oiseaux et les poissons, mais pas encore dans le sous-phylum des crustacés, l'un des groupes les plus diversifiés d'arthropodes. Nous testons dans notre étude le potentiel de l'utilisation de COI pour faire des identifications dans ce groupe en examinant deux niveaux disparates de la hiérarchie taxonomique — les ordres et les espèces. La première phase de notre recherche consiste en l'établissement de profils de séquences pour 23 des ordres principaux de crustacés, d'après l'analyse de 150 espèces, appartenant chacune à une famille différente. Les données sur les acides aminés de COI permettent de placer ces taxons en ensembles cohésifs dont la composition coïncide avec les frontières couramment acceptées aux niveaux de l'ordre, du super-ordre et de la sous-classe. Nous avons ensuite étudié la détermination au niveau spécifique chez un ensemble de décapodes et chez des représentants des genres *Daphnia* (Cladocera) et *Gammarus* (Amphipoda). Ces études révèlent que les niveaux de divergence des séquences de nucléotides sont de 19 à 48 fois plus importants entre les espèces d'un même genre qu'entre les individus d'une même espèce. Nous concluons que la variation des séquences dans la région du code-barre de COI devrait permettre de séparer de façon très efficace les espèces de crustacés.

[Traduit par la Rédaction]

Introduction

The ideal DNA-based identification system would employ a single gene for the placement of any organism in the full taxonomic hierarchy from kingdom to species. The ability of a ~658 base pair (bp) section of the mitochondrial cytochrome c oxidase I (COI) gene to provide this resolution has now been demonstrated for many animal lineages, including lepidopterans (Hebert et al. 2003; Janzen et al. 2005; Hajibabaei et al. 2006), birds (Hebert et al. 2004), spiders (Barrett and Hebert 2005), ants (Smith et al. 2005), and fishes (Ward et al. 2005) (but see Dasmahapatra and Mallet 2006 for a discussion of success rates). Although COI appears to have high potential as the foundation for an identification system, it is critical to verify that it can deliver similar taxonomic resolution in other groups. The present study addresses this issue by examining the patterning of COI diversity in the subphylum Crustacea, the most ancient and structurally diverse group of arthropods. The diversity of modern crustaceans, in addition to their remarkable vari-

Received 20 January 2006. Accepted 26 October 2006. Published on the NRC Research Press Web site at http://cjfas.nrc.ca on 24 February 2007.

J19120

F.O. Costa.^{1,2} Instituto do Mar (IMAR), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

J.R. deWaard, S. Ratnasingham, R.T. Dooh, M. Hajibabaei, and P.D.N. Hebert. Biodiversity Institute of Ontario, University of Guelph, ON N1G 2W1, Canada.

J. Boutillier. Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada.

¹Corresponding author (e-mail: f.o.costa@bangor.ac.uk). ²Present address: School of Biological Sciences, University of Wales, Bangor, Bangor, Gwynedd, LL57 2UW, United Kingdom. ety in morphologies, habitats, and ecologies, is reflected by their assignment to six classes, 48 orders, 849 different families, and about 52 000 species (Martin and Davis 2001). By comparison, the more than one million described species of insects are assigned to about 1000 families, but just 30 orders and a single class (Borror et al. 1989; Nielsen 1995).

While the higher level systematics (i.e., class, subclass) of the Crustacea are not fully stabilized (Martin and Davis 2001), ordinal boundaries have been nearly constant for more than 20 years despite ongoing morphological and molecular studies. As such, this taxonomic rank represents a useful criterion to judge the ability of a DNA-based identification system to deliver coarse taxonomic placement of an unknown taxon. However, as the primary task of taxonomy lies in identification of species, it is also critical to test the effectiveness of DNA barcodes at this level. The present study examines the effectiveness of a 658 bp section near the 5' end of COI (hereafter referred to as the COI barcode) as an identification tool at these two disparate levels in the taxonomic hierarchy - orders and species. Its effectiveness at the ordinal level was tested in a two-step process: 150 species, each in a different family and including representatives from 23 of the 48 crustacean orders, were sequenced to establish a COI ordinal profile. The effectiveness of this profile in ordinal-level placements was subsequently evaluated by determining its success in the assignment of 100 new taxa to the proper order. The present study also sought to determine if the COI barcode region can enable species-level assignments within the Crustacea; this issue was examined in representatives of nine genera of Decapoda and in single genera of Cladocera and Amphipoda.

Materials and methods

Taxon sampling

COI ordinal profile

One hundred and fifty species, each belonging to a different family and including representatives from 23 of 48 crustacean orders, were sequenced to establish a COI ordinal profile (sequences for 75 of these families were acquired from GenBank, see below). More than 10 families were examined from each of four orders (Amphipoda, Calanoida, Decapoda, Isopoda), between four and nine families from eight other orders (Anostraca, Cladocera, Cumacea, Diplostraca, Harpacticoida, Podocopida, Sessilia, Stomatopoda), while one to two families were examined from the other 11 orders. Sequences were also obtained for 100 additional species (53 were acquired from GenBank, see below) in families included in the profile, but belonging to different genera to provide a group of test taxa (details on specimens are provided in Appendix A, Tables A1 and A2).

Decapod case study

Family- and species-level resolution was analyzed in a data set that comprised members of the order Decapoda. Most newly analyzed decapods were collected on research cruises led by Fisheries and Oceans Canada (DFO) off the Pacific coast of Canada in 2002 and 2004, but a few species were collected in Resolute Bay, Nunavut; in the Gulf of Gdansk, Poland; and off Lizard Island, Australia. These

specimens were identified to the species level after collection and were subsequently preserved in 100% ethanol. In total, sequences were newly gathered for 146 specimens, representing 57 species, and these results were merged with 173 sequences from GenBank, representing 71 species (complete list of decapods in Appendix A, Tables A3 and A4).

Selected crustacean genera

To obtain detailed information on the patterning of COI diversity among closely related Crustacea, additional data were assembled on two genera to enable a comparison of congeneric versus conspecific divergences. This analysis was performed for 13 species in the cladoceran genus *Daphnia* (Adamowicz et al. 2004) and for 12 species in the amphipod genus *Gammarus* (F.O. Costa and P.D.N. Hebert, unpublished data). A complete list of species used in these analyses is provided in Appendix A, Tables A5 and A6.

GenBank data

With more than 5000 entries, COI is the most intensively studied crustacean gene, representing nearly 50% of the GenBank mitochondrial DNA data for this subphylum (Gen-Bank search, 30 June 2005). Although these entries provide COI sequences for over 600 species, very few include a complete sequence for the gene. Because the partial sequences were acquired with varied primers, the opportunities for sequence comparisons are limited. From sequences available in GenBank (September 2004), 1585 providing coverage for the COI barcode region were extracted. Use of these data was further limited by the short lengths of some sequences. Only those with a minimum of 500 bp of the COI barcode were used, with a single exception to accommodate a small group of 498 bp sequences for the crab Carcinus (Roman and Palumbi 2004). The data from GenBank do provide valuable information for analyses that require a broad taxonomic coverage, such as an examination of shifts in guanine-cytosine (GC) usage among crustacean lineages. For this purpose, a total of 617 sequences were extracted and analyzed at various taxonomic levels.

DNA extraction, amplification, and sequencing

In the case of newly analyzed specimens for the ordinal study, DNA was extracted using the proteinase K protocol (Schwenk et al. 1998) or Isoquick (Orca Research Inc., Bothell, Washington). A 658 bp fragment from the 5' end of COI was amplified using the primer pair LCO1490 (5'-GGTCAACAAATCATAAAGATATTGG-3') and HCO2198 (5'-TAAACTTCAGGGTGACCAAAAAATCA-3') (Folmer et al. 1994). Each polymerase chain reaction (PCR) had a total volume of 50 μ L and contained 5 μ L of 10× PCR buffer, 1.5 mmol·L⁻¹ of MgCl₂, 50 µmol·L⁻¹ of each dNTP, 1 unit (U) of Taq polymerase (1 U \approx 16.67 nkat), 0.3 μ mol·L⁻¹ of each primer, and 2-4 µL of DNA template. The PCR thermal regime consisted of 60 s at 94 °C; five cycles of 30 s at 94 °C, 90 s at 45 °C, and 60 s at 72 °C; 35 cycles of 30 s at 94 °C, 90 s at 51 °C, and 60 s at 72 °C; followed by a final extension of 5 min at 72 °C. The PCR product was subsequently gel-purified with Qiaex II kit (Qiagen Inc., Valencia, California.) and sequenced in one direction on an ABI 377

automated sequencer (Applied Biosystems, Inc., Foster City, California).

A slightly different protocol was used in the decapod case study; DNA was isolated using either the GenElute kit (Sigma Inc., St. Louis, Missouri) or the Chelex dry release method (Hajibabaei et al. 2005). The COI barcode was amplified using HCO2198 as reverse primer combined with one of three forward primers: LCO1490, CrustF1 (5'-TTTTCTACA-AATCATAAAGACATTGG-3'), or CrustF2 (5'-GGTTCTTCT-CCACCAACCACAARGAYATHGG-3'). Each polymerase chain reaction had a total volume of 50 µL and contained 5 μ L of 10× PCR buffer, 2.2 mmol·L⁻¹ of MgCl₂, 50 μ mol·L⁻¹ of each dNTP, 1.5 U of Taq polymerase, 0.2 μ mol·L⁻¹ of each primer, and 1 µL of DNA template. The PCR thermal regime was identical to the one described above except for the CrustF2 primer, which was as follows: 1 cycle of 60 s at 94 °C; 35 cycles of 30 s at 94 °C, 90 s at 42 °C, and 60 s at 72 °C; followed by a final cycle of 5 min at 72 °C. The PCR product was subsequently gel-purified with UltraCleanTM15 DNA purification kit (MoBio Laboratories, Inc., Solana Beach, California) and sequenced in one or both directions using an ABI 377 or ABI 3730. For sequencing reactions we used BigDye® Terminator v3.1 cycle sequencing kit (Applied Biosystems, Inc., Foster City, California).

Data analysis

Sequence data, electropherograms, and primer details for each newly analyzed specimen are available in the completed project file entitled "Crustacean Barcodes" on the Barcode of Life Data Systems (BOLD) website (http:// www.barcodinglife.org). COI sequences were edited using SeqApp 1.9 sequence editor (http://iubio.bio.indiana.edu/ soft/molbio/seqapp/) and Sequencher (Gene codes Corporation, Ann Arbor, Michigan) and aligned using CLUSTAL W (Thompson et al. 1994) implemented in MEGA3 (Kumar et al. 2004). To accommodate GenBank data, all sequences were subsequently pruned to 658 bp.

Neighbor-joining (NJ) analysis, implemented in MEGA3 (Kumar et al. 2004), was employed for graphical representation of the patterns of COI divergences among crustacean species. The Kimura two-parameter (K2P) distance model was used to calculate nucleotide divergences (Kimura 1980), while Poisson correction (Nei and Kumar 2000) was used to compute amino acid divergences for the ordinal profile. Both the ordinal amino acid NJ tree and the Decapod nucleotide NJ tree were subjected to 10 000 bootstraps.

The first phase of the ordinal analysis involved the generation of an NJ tree for the 150 profile taxa. This profile was subsequently used as a classification engine by rerunning the NJ analysis following repeated addition of a single test taxon to the data set. After each analysis, the test species was assigned membership in the same taxonomic group as its nearest neighboring taxon. For example, a test taxon was identified as a member of the order Anostraca if it grouped most closely with any one of the seven anostracan families included in the profile. The success of the classification was quantified by determining the proportion of test taxa assigned to their proper order.

Levels of COI nucleotide divergences among conspecific and congeneric individuals were compared in *Daphnia*, *Gammarus*, and in those genera from the decapod data set that included at least three species and two specimens of each species. For this purpose, the "Distance Summary" implemented in BOLD (Ratnasingham and Hebert 2007) was used. This feature performs an automated computation of pairwise divergences at the species, genus, and family level for all possible specimen combinations in the data set. The average values obtained for conspecific and congeneric divergences were applied in the calculation of the taxonomic resolution ratio, which is defined as the quotient between congeneric divergences.

Results

Ordinal profile

The amino acid NJ tree for representatives of 150 crustacean families showed high cohesion of taxonomic groups. Most allied species formed assemblages that mirrored established higher-taxonomic categories — orders, superorders, or subclasses (Fig. 1; a detailed tree can be found in Supplemental Appendix S1).³ For example, members of the orders Sessilia and Pedunculata formed a cohesive group as superorder Thoracica, while members of the subclasses Copepoda and Phyllopoda formed distinctive assemblages. Members of the orders Amphipoda, Anostraca, Isopoda, Mysida, and Stomatopoda were also joined in cohesive clusters. There were, however, a few deviations from this pattern; members of the order Decapoda split into two groups, with Stomatopoda embedded within. As well, two species in the orders Cumacea and Amphipoda (Pseudocuma similis and Themisto gaudichaudii, respectively) were genetically divergent from allied taxa, grouping instead with species from orders represented by a single family. A few other species, such as the parasitic isopods, (Bopyroides hippolytes, Olencira praegustator, Rocinela angustata), occupied isolated positions in the tree.

The ordinal profile was subsequently used to classify 100 newly analyzed species. In 95 of these cases, the test taxon was assigned to the correct order. In three cases, the test taxa were assigned only at a rank above the order level, namely *Drepanopus* sp., *Eurycercus longirostris*, and *Mytilocypris ambiguosa*, which were assigned to subclasses Copepoda and Phyllopoda and class Ostracoda, respectively. Two misassignments involved taxa in the order Mysidacea, namely *Paramesopodopsis rufa* and *Tenagomysis australis*.

Decapod study

Members of most (13 of 17) decapod families represented by more than one species formed a cohesive cluster. However, species in the families Palaemonidae, Portunidae, and Oplophoridae were each split into two separate clusters, while Paguridae clustered with Lithodidae. The NJ tree for 127 species of Decapoda did, however, reveal the regular

³Supplementary data for this article are available on the journal Web site (http://cjfas.nrc.ca) or may be purchased from the Depository of Unpublished Data, Document Delivery, CISTI, National Research Council Canada, Building M-55, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada. DUD 5134. For more information on obtaining material refer to http://cisti-icist.nrc-cnrc.gc.ca/irm/unpub_e.shtml.

Fig. 2. Three illustrative branches of the neighbor-joining tree based on mitochondrial cytochrome c oxidase I (COI) barcode nucleotide distances (K2P) for 127 decapod species representing 30 families. Bootstrap values for 10 000 replicates are shown near the respective branches. The complete tree is displayed in Supplemental Appendix S2.³

ability of COI sequences to provide species-level resolution (Fig. 2; the complete tree can be found in Supplemental Appendix S2).³ COI sequences formed assemblages congruent with known species boundaries for all taxa from the Pacific Coast of Canada, Resolute Bay, and the Baltic Sea. We had

comparable results with GenBank sequences (correct assignment = 93.0%), with only 5 congeneric taxa of unsettled species status not being discriminated with the COI sequences. All five taxa belong to the mitten crab genus *Eriocheir*, where species-level taxonomy has been problematic

Table 1. Pairwise mitochondrial cytochrome c oxidase I (COI) barcode nucleotide divergences for Decapoda and selected crustacean genera, using K2P distances (%).

	Pairwise	No. of	Min.	Mean	Max.		
Taxon ^a	divergences	comparisons	distance	distance ^b	distance	TRR^{c}	Reference
Order Decapoda	Within a species	144	0.00	0.46±0.05	2.57	37.6	This study
(54 species, 31 genera,	Within a genus	409	4.92	17.16±0.18	23.66		·
138 sequences)	Within a family	459	11.27	19.75±0.17	49.93		
-	Within a order	8441	15.30	27.65±0.05	49.00		
Genus Cancer	Within a species	5	0.16	0.50 ± 0.15	0.97	34.6	This study
(3 species, 7 sequences)	Within a genus	16	14.97	17.24±0.45	20.01		
Genus Chionoecetes	Within a species	5	0.00	0.26 ± 0.08	0.47	21.5	This study
(3 species, 7 sequences)	Within a genus	16	4.92	5.67±0.09	6.28		
Genus Crangon	Within a species	5	0.00	0.94 ± 0.41	2.13	20.1	This study
(3 species, 7 sequences)	Within a genus	16	17.31	18.91±0.41	21.74		
Genus Eualus	Within a species	22	0.00	0.59 ± 0.14	2.57	32.5	This study
(5 species, 16 sequences)	Within a genus	98	15.17	19.24±0.23	23.64		
Genus Pandalus	Within a species	24	0.00	0.48 ± 0.11	1.86	34.4	This study
(6 species, 21 sequences)	Within a genus	186	9.85	16.49±0.18	20.82		
Genus Spirontocaris	Within a species	8	0.15	0.47 ± 0.11	1.20	32.9	This study
(5 species, 11 sequences)	Within a genus	47	10.80	15.40±0.29	18.74		
GenBank Decapoda							
Genus Callinectes	Within a species	47	0.11	0.57 ± 0.03	1.08	29.9	Pfeiler et al. 2005
(3 species, 14 sequences)	Within a genus	44	15.86	17.03±0.10	18.09		Darden et al., unpub- lished data ^d
Genus Cherax	Within a species	22	0.17	2.81±0.52	9.12	5.7	Munasinghe et al.
(3 species, 14 sequences)	Within a genus	69	10.43	15.95±0.42	22.63		2003
	U						Miller et al. 2004
Genus Raymunida	Within a species	26	0.00	0.25 ± 0.08	2.17	48.3	Macpherson and
(4 species, 17 sequences)	Within a genus	110	7.6	12.08±0.21	16.41		Machordom 2001
Other crustaceans	-						
Order Cladocera							
Genus Daphnia	Within a species	472	0.00	1.32 ± 0.05	4.30	19.2	Adamowicz et al.
(13 species, 80 sequences)	Within a genus	2688	13.18	25.28±0.05	30.65		2004
Order Amphipoda	6						
Genus Gammarus	Within a species	284	0	0.74 ± 0.05	3.09	26.1	Costa and Hebert,
(12 species, 69 sequences)	Within a genus	2062	5.58	25.33±0.06	31.39		unpublished data ^e

^aNumber of species with more than one sequence and number of sequences analysed are shown in parentheses.

^bData reported as K2P distance (%) \pm SE.

^cTaxonomic resolution ratio (see Data analysis in Materials and methods).

^dR.L. Darden, B.R. Kreiser, and A. Place, Biological Sciences, University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS 39406, USA.

^eF.O. Costa and P.D.N. Hebert, School of Biological Sciences, University of Wales, Bangor, Bangor, Gwynedd, LL57 2UW, United Kingdom.

(Chu et al. 2003), and its members show incomplete resolution in the NJ tree with *E. formosa* and *E. rectus* in one cluster and *E. hepuensis*, *E. sinensis*, and *E. japonica* in a second cluster.

COI divergences among members of a species versus congeners

For members of the order Decapoda, the average K2P distance within species averaged 0.46%, while congeneric divergences averaged 17.16%, but ranged from a low 4.92% in the crab genus *Chionoecetes* to a high of 31.39% in the amphipod genus *Gammarus* (Table 1). Within-species divergences were below 1% for 86% of the within-species comparisons in decapods. The equivalent value in *Gammarus* was only 75%, while in *Daphnia* it was 59%. Athough the *Daphnia* data set showed higher within-species distances, the congeneric distances were are also high, averaging 25.28%, so even in this genus there was a clear separation of conspecific and congeneric distances (Fig. 3). The distribution of K2P distances within different taxonomic categories (species, genus) for the Decapoda and as well for the genera *Pandalus, Daphnia*, and *Gammarus* is shown (Fig. 3).

Variation of GC content in crustacean COI genes

The availability of 25 complete mitochondrial sequences enabled examination of the relationship between GC content of the COI barcode region and that in the whole mitochondrial genome. This analysis revealed that the GC content of the barcode region was a very strong predictor ($r^2 = 0.81$, p < 0.001) of genomic shifts in nucleotide usage, motivating an examination of GC content in all crustaceans where 5'-COI information was available. The GC content of the

Fig. 3. Frequency distribution of conspecific (solid bars) and congeneric (shaded bars) mitochondrial cytochrome c oxidase I (COI) barcode distances (K2P) from pairwise comparisons among members of the order Decapoda and selected crustacean genera: (a) order Decapoda, (b) genus Pandalus, (c) genus Daphnia, and (d) genus Gammarus. Values below 0.1% are not displayed.

K2P distance (%)

barcode region varied among the 617 species of crustaceans from 29.9% to 49.6% (Table 2). The highest GC content was observed in *Parartemia longicaudata* from saline lakes in Australia, while the lowest GC content was found in the

amphipod *Hyperia galba*, a parasite of jellyfish. Members of the orders Amphipoda and Isopoda possessed the highest and lowest average GC content, respectively (41.2% vs. 38.7%). In all cases, the GC content decreased from the first

				Codon position	on	
Taxon ^a	Min.	Mean	Max.	1st	2nd	3rd
Subphylum Crustacea (617)	29.86	38.98±0.14	49.62	49.35±0.14	43.05±0.06	24.21±0.33
Order Amphipoda (48)	35.02	40.39±0.53	49.39	47.54±0.42	43.61±0.17	29.82±1.34
Order Anostraca (35)	35.81	39.46±0.53	49.62	51.07±0.35	44.27±0.19	23.03±1.38
Subclass Copepoda (61)	33.50	38.69±0.38	44.73	48.34±0.28	42.02±0.12	25.71±0.97
Order Decapoda (138)	32.62	39.29±0.27	47.04	50.82±0.25	42.96±0.10	23.92±0.64
Order Isopoda (36)	33.17	38.93±0.54	45.69	47.95±0.55	44.00±0.33	24.83±1.23
Subclass Phyllopoda (55)	34.48	40.10±0.36	46.35	51.42±0.33	43.93±0.08	24.81±0.89

Table 2. Variation in GC content in the mitochondrial cytochrome c oxidase I (COI) barcode region among crustacean taxa.

^aNumber of species analyzed are shown in parentheses.

to the third codon position, ranging from 48% to 52% in the former, but only from 23% to 31.6% in the latter. Variation in GC content was consistently higher in the third codon base, while the second base showed the least variation.

Discussion

This study establishes that the barcode region of COI has considerable potential as the foundation for a DNA barcoding identification system for crustaceans. A COI profile based on single representatives of 150 crustacean families proved 95% effective in placing newly encountered species to the right order. This high success makes it clear that a profile based on even a few thousand species will provide a highly effective tool for taxonomic assignments at this level. Further parameterization of the ordinal profile should begin by adding sequence records for each of the 849 crustacean families. Higher sampling intensity should be directed to families with accelerated rates of molecular evolution, and the present results provide some directions in this regard. Parasitic lineages often show rate acceleration (Hassanin 2006; J.R. deWaard and P.D.N. Hebert, unpublished data), and this pattern was apparent in the current study, as evidenced by the isolated positions of parasitic isopods in the NJ tree. As a result, particular sampling intensity should be directed to crustacean lineages with parasitic lifestyles to subdivide the misleading long branches and to create an effective system for placements deep in the taxonomic hierarchy.

The present study suggests that a COI-based system will regularly deliver species-level resolution for crustacean lineages. In fact, levels of sequence divergence among congeneric species of crustaceans averaged 17.16%, the highest value yet reported for any animal group. By comparison, congeneric species of lepidopterans show just 6.1% variation (Hebert et al. 2003), birds show 7.93% variation (Hebert et al. 2004), and fishes possess 9.93% divergence (Ward et al. 2005). Of course, the actual level of divergence among congeners is less critical than the ratio of the genetic divergence between species to that within species. Levels of intraspecific variation in crustaceans averaged 0.46%, values slightly higher than those reported in other groups (most range from 0.25% to 0.30%), but the interspecific to intraspecific ratios of sequence divergence were very large, ranging from 19.2 to 48.3. As a consequence, species recognition was straightforward in most cases (~95%). Based on these observations, we conclude that a COI barcoding system will deliver levels of species resolution comparable with those seen in tropical lepidopterans (98%, Hajibabaei et al. 2006), marine gastropods (96%, Meyer and Paulay 2005), fishes (100%, Ward et al. 2005), and birds (95%, Hebert et al. 2004).

We emphasize the need for a critical assessment of both barcode results and current taxonomic systems in cases of discordance. For example, the lack of barcode divergence between members of the mitten crab genus Eriocheir reflects a case where there is a growing consensus that some recognized species do not merit this status (discussed in detail in Chu et al. 2003 and Tang et al. 2003). In other cases, levels of barcode variation within species have surely been inflated by a failure of current taxonomic systems to recognize valid species. For example, the presence of two genetically divergent groups in the hermit crabs Pagurus longicarpus and Pagurus pollicaris is thought to reflect overlooked species (Young et al. 2002). Similarly, the freshwater shrimp Paratya australiensis includes several highly divergent mitochondrial lineages that are now thought to represent species that diversified in the Pliocene (Baker et al. 2004). Finally, both morphological and biogeographic data suggest the possibility of overlooked species within Cherax tenuimanus and Cherax preissi (Munasinghe et al. 2003).

No single approach can provide a definitive conclusion on species boundaries (but see Lee 2003). We emphasize that DNA barcoding is not a substitute for conventional taxonomic approaches. It seeks instead to flag cases of deep genetic divergence among individuals grouped as a single species that may indicate overlooked species. For example, we noted particularly high intraspecific divergences (3.1%)in Gammarus oceanicus, but individuals from the Baltic Sea, Iceland, and Hudson Bay showed an average within-species K2P divergence of only 0.43%. The extreme divergence values all reflected samples of this species from the St. Lawrence estuary, perhaps reflecting an overlooked species endemic to this region. In contrast with these cases, there are other cases where species recognized through past taxonomic work show little or no barcode divergence. Some of these cases may represent instances where current taxonomic systems inappropriately recognize variation as reflecting species status. However, other cases may reflect very young species. We emphasize that the recognition of taxonomic boundaries in such cases is always demanding, often subjective, and best pursued through a weight of evidence approach that employs molecular, morphological, and ecological traits to reach a decision.

As the creation of a comprehensive COI barcode database for crustaceans will be a substantial undertaking, we stress that benefits will be diverse. COI can, for example, serve as a sentinel gene enabling the detection of lineages with unusual patterns of nucleotide usage or exceptional rates of evolution. The analysis of GC content in the present study demonstrates that the COI barcode region can be a predictor of the nucleotide usage of the entire mitochondrial genome. Similarly, the molecular rate acceleration of parasitic lineages revealed previously using other gene regions (Hassanin 2006; J.R. deWaard and P.D.N. Hebert, unpublished data) was evident in the current data set. As such, it will aid multigene systematics by allowing such studies to target taxa showing unusual attributes of nucleotide usage or evolutionary rates. The benefits of a barcode system will also extend into ecological work. For example, an estimated one-third of marine arthropods (thus mainly crustaceans) in 138 studies from the North Atlantic could not be identified to a species level (Schander and Willassen 2005). Schander and Willassen (2005) pointed out several relevant means by which improved ability to recognize marine species will benefit marine biological and ecological sciences in a number of ways (see also Böttger-Schnack et al. 2004). A particular gain could arise through species-level identification of larvae, enabling studies of larval dispersal and ecology, and benthic adult connectivity, all critical for management of crustacean fisheries (Tully et al. 2003). DNA barcoding will also allow the identification of crustacean prey items in stomach contents of fishes, birds, and other predators, aiding parameterization of food web models. For example, morphological approaches did not allow the species identification of several crustacean prey in the stomach contents of fulmars (Fulmarus glacialis) (Phillips et al. 1999). Other potential benefits of a COI barcode identification system for crustaceans include the identification of parasitic crustaceans at any developmental stage (e.g., Øines and Heuch 2005), as well as the detection of invasive crustacean species (Armstrong and Ball 2005). In summary, the present study reveals that a large-scale effort to assemble DNA barcode records for crustaceans will deliver a highly effective identification system with impacts on a broad range of research themes.

Acknowledgements

The "Fundação para a Ciência e a Tecnologia" (Portugal) provided a postdoctoral fellowship (BPD/11588/2002) to F.O. Costa. This work was supported by grants to PDNH from the Natural Sciences and Engineering Research Council of Canada (NSERC) and from the Gordon and Betty Moore Foundation. We thank Monika Normant for decapod samples from the Baltic Sea.

References

Adamowicz, S.J., Hebert, P.D.N., and Marinone, M.C. 2004. Species diversity and endemism in the *Daphnia* of Argentina: a genetic investigation. Zool. J. Linn. Soc. 140: 171–205.

- Armstrong, K.F., and Ball, S.L. 2005. DNA barcodes for biosecurity: invasive species identification. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 1813–1823.
- Baker, A.M., Hurwood, D.A., Krogh, M., and Hughes, J.M. 2004. Mitochondrial DNA signatures of restricted gene flow within divergent lineages of an atyid shrimp (*Paratya australiensis*). Heredity, **93**: 196–207.
- Barrett, R.D.H., and Hebert, P.D.N. 2005. Identifying spiders through DNA barcodes. Can. J. Zool. 83: 481–491.
- Borror, D.J., Triplehorn, C.A., and Johnson, N.F. 1989. An introduction to the study of insects. 6th ed. Saunders College Publishing, Philadelphia, Pa.
- Böttger-Schnack, R., Lenz, J., and Weikert, H. 2004. Are taxonomic details of relevance to ecologists? An example from oncaeid microcopepods of the Red Sea. Mar. Biol. 144: 1127–1140.
- Chu, K.H., Ho, H.Y., Li, C.P., and Chan, T.Y. 2003. Molecular phylogenetics of the mitten crab species in *Eriocheir, sensu lato* (Brachyura: Grapsidae). J. Crustac. Biol. 23: 738–746.
- Dasmahapatra, K.K., and Mallet, J. 2006. DNA barcodes: recent successes and future prospects. Heredity, 97: 254–255.
- Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome *c* oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. **3**: 294–297.
- Hajibabaei, M., deWaard, J.R., Ivanova, N.V., Ratnasingham, S., Dooh, R.T., Kirk, S.L., Mackie, P.M., and Hebert, P.D.N. 2005. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 1959–1967.
- Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.D.N. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. U.S.A. 103: 968–971.
- Hassanin, A. 2006. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol. Phylogenet. Evol. 38: 100–116.
- Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270: 313–322.
- Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., and Francis, C.M. 2004. Identification of birds through DNA barcodes. PLoS Biol. 2: 1657–1663.
- Janzen, D.H., Hajibabaei, M., Burns, J.M., Hallwachs, W., Remigio, E., and Hebert, P.D.N. 2005. Wedding biodiversity inventory of a large complex Lepidoptera fauna with DNA barcoding. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 1835–1845.
- Kimura, M. 1980. A simple method of estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.
- Kumar, S., Tamura, K., and Nei, M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150–163.
- Lee, M.S.Y. 2003. Species concepts and species reality: salvaging a Linnaean rank. J. Evol. Biol. **16**: 179–188.
- Macpherson, E., and Machordom, A. 2001. Phylogenetic relationships of species of *Raymunida* (Decapoda: Galatheidae) based on morphology and mitochondrial cytochrome oxidase sequences, with the recognition of four new species. J. Crustac. Biol. **21**: 696–714.
- Martin, J.W., and Davis, G.E. 2001. An updated classification of the recent Crustacea. Natural History Museum, Los Angeles, Calif. Contrib. Sci. Ser. 39.
- Meyer, C.P., and Paulay, G. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. **3**: 2229–2238.

- Miller, A.D., Nguyen, T.T., Burridge, C.P., and Austin, C.M. 2004. Complete mitochondrial DNA sequence of the Australian freshwater crayfish, *Cherax destructor* (Crustacea: Decapoda: Parastacidae): a novel gene order revealed. Gene, **331**: 65–72.
- Munasinghe, D.H.N., Murphy, N.P., and Austin, C.M. 2003. Utility of mitochondrial DNA sequences from four gene regions for systematic studies of Australian freshwater crayfish of the genus *Cherax* (Decapoda: Parastacidae). J. Crustac. Biol. 23: 402–417.
- Nei, M., and Kumar, S. 2000. Molecular evolution and phylogenetics. Oxford University Press, New York.
- Nielsen, C. 1995. Animal evolution: interrelationships of the living phyla. Oxford University Press, Oxford, UK.
- Øines, Ø., and Heuch, P.A. 2005. Identification of sea louse species of the genus *Caligus* using mtDNA. J. Mar. Biol. Assoc. U.K. 85: 73–79.
- Pfeiler, E., Hurtado, L.A., Knowles, L.L., Torre-Cosío, J., Bourillón-Moreno, L., Márquez-Farías, J.F., and Montemayor-López, G. 2005. Population genetics of the swimming crab *Callinectes bellicosus* (Brachyura: Portunidae) from the eastern Pacific Ocean. Mar. Biol. **146**: 559–569.
- Phillips, R.A., Petersen, M.K., Lilliendahl, K., Solmundsson, J., Hamer, K.C., Camphuysen, C.J., and Zonfrillo, B. 1999. Diet of the northern fulmar *Fulmarus glacialis*: reliance on commercial fisheries? Mar. Biol. **135**: 159–170.
- Ratnasingham, S., and Hebert, P.D.N. 2007. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes, doi:10.1111/j.1471-8286.2006.01678.x.
- Roman, J., and Palumbi, S.R. 2004. A global invader at home: population structure of the green crab, *Carcinus maenas*, in Europe. Mol. Ecol. 13: 2891–2898.

- Schander, C., and Willassen, E. 2005. What can biological barcoding do for marine biology? Mar. Biol. Res. 1: 79–83.
- Schwenk, K., Sand, A., Boersma, M., Brehm, M., Mader, E., Offerhaus, D., and Spaak, P. 1998. Genetic markers, genealogies and biogeographic patterns in the Cladocera. Aquat. Ecol. 32: 37–51.
- Smith, M.A., Fisher, B., and Hebert, P.D.N. 2005. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 1825–1834.
- Tang, B., Zhou, K., Song, D., Yang, G., and Dai, A. 2003. Molecular systematics of the Asian mitten crabs, genus *Eriocheir* (Crustacea: Brachyura). Mol. Phylogenet. Evol. 29: 309–316.
- Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673– 4680.
- Tully, O., Freire, J., and Addison, J. 2003. Crustacean fisheries. Fish. Res. 65: 1–2.
- Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., and Hebert, P.D.N. 2005. DNA barcoding Australia's fish species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 1847–1957.
- Young, A.M., Torres, C., Mack, J.E., and Cunningham, C.W. 2002. Morphological and genetic evidence for vicariance and refugium in Atlantic and Gulf of Mexico populations of the hermit crab *Pagurus longicarpus*. Mar. Biol. **140**: 1059–1066.

Appendix A

Table A1. List of specimens used in the profile of 150 crustacea families, sorted by family name.

GenBank accession No.	Class	Order	Family	Species	Length
AY145426	Maxillopoda	Calanoida	Acartiidae	Acartia omorii	624
EF432739	Malacostraca	Isopoda	Aegidae	Rocinela angustata	654
AF436034	Malacostraca	Decapoda	Aeglidae	Aegla uruguayana	657
AF531742	Maxillopoda	Calanoida	Aetideidae	Gaetanus tenuispinus	627
AF436036	Malacostraca	Decapoda	Albuneidae	Blepharipoda occidentalis	657
DQ889084	Malacostraca	Amphipoda	Ampeliscidae	Byblis gaimardi	623
DQ889076	Malacostraca	Anaspidacea	Anaspididae	Anaspides tasmaniae	657
DQ889126	Malacostraca	Amphipoda	Anisogammaridae	Ramellogammarus sp.	654
DQ889078	Malacostraca	Isopoda	Arcturidae	Arcturus baffini	644
DQ889096	Maxillopoda	Arguloida	Argulidae	Dolops sp.	624
DQ889079	Malacostraca	Isopoda	Armadillidiidae	Armadillidium sp.	657
NC_001620	Branchiopoda	Anostraca	Artemiidae	Artemia franciscana	624
DQ889085	Malacostraca	Isopoda	Asellidae	Caecidotea sp.	652
DQ889120	Malacostraca	Decapoda	Atyidae	Paratya australiensis	657
AF242660	Maxillopoda	Sessilia	Balanidae	Semibalanus balanoides	642
DQ889092	Malacostraca	Cumacea	Bodotriidae	Cyclaspis caprella	633
DQ889082	Malacostraca	Isopoda	Bopyridae	Bopyroides hippolytes	629
DQ889083	Branchiopoda	Cladocera	Bosminidae	Bosmina sp.	639
AF209064	Branchiopoda	Anostraca	Branchinectidae	Branchinecta paludosa	639
AF209059	Branchiopoda	Anostraca	Branchipodidae	Parartemia contracta	639
AF044057	Malacostraca	Decapoda	Bresiliidae	Rimicaris exoculata	605
DQ889086	Branchiopoda	Diplostraca	Caenestheriidae	Caenestheriella setosa	639
DQ889087	Maxillopoda	Calanoida	Calanidae	Calanus glacialis	624
AF436025	Malacostraca	Decapoda	Callianassidae	Callichirus major	649
DQ882037	Malacostraca	Decapoda	Calocarididae	Calocaris investigatoris	658

 Table A1 (continued).

GenBank accession No.	Class	Order	Family	Species	Length
DQ889125	Malacostraca	Decapoda	Cambaridae	Procambarus clarkii	654
DQ882040	Malacostraca	Decapoda	Cancridae	Cancer magister	655
AY145434	Maxillopoda	Calanoida	Candaciidae	Candacia ethiopica	624
AF315015	Maxillopoda	Harpacticoida	Canuellidae	Coullana sp.	657
DQ889075	Malacostraca	Amphipoda	Caprellidae	Aeginina longicornis	644
AY428048	Maxillopoda	Sessilia	Catophragmidae	Catomerus polymerus	643
DQ356555	Maxillopoda	Calanoida	Centropagidae	Boeckella gracilis	636
DQ889088	Branchiopoda	Diplostraca	Cercopagididae	Cercopagis pengoi	639
AF209062	Branchiopoda	Anostraca	Chirocephalidae	Artemiopsis stefanssoni	639
DQ889089	Maxillopoda	Sessilia	Chthamalidae	Chamaesipho sp.	657
DQ889090	Branchiopoda	Cladocera	Chydoridae	Chydorus sp.	639
AF513651	Maxillopoda	Calanoida	Clausocalanidae	Pseudocalanus mimus	639
AF315009	Maxillopoda	Harpacticoida	Cletodidae	Cletocamptus deitersi	657
AY327387	Maxillopoda	Harpacticoida	Cletopsyllidae	Bathycletopsyllus sp.	603
AF205247	Malacostraca	Stomatopoda	Coronididae	Parvisquilla multituberculata	648
AY174366	Maxillopoda	Sessilia	Coronulidae	Chelonibia testudinaria	586
DQ889128	Malacostraca	Decapoda	Crangonidae	Sclerocrangon boreas	657
DQ889090	Malacostraca	Amphipoda	Crangonyctidae	<i>Crangonyx</i> sp.	637
DQ889093	Branchiopoda	Diplostraca	Cyclestheriidae	Cyclestheria hislopi	639
AF255791	Malacostraca	Isopoda	Cymothoidae	Olencira praegustator	583
DQ889094	Ostracoda	Podocopida	Cyprididae	Cypridopsis vidua	624
NC_000844	Branchiopoda	Diplostraca	Daphniidae	Daphnia pulex	624
AJ534411	Ostracoda	Podocopida	Darwinulidae	Vestalenula molopoensis	534
DQ889095	Maxillopoda	Calanoida	Diaptomidae	Diaptomus sp.	608
AF520442	Malacostraca	Cumacea	Diastylidae	Diastylopsis thilenuisi	657
DQ882097	Malacostraca	Decapoda	Diogenidae	Paguristes turgidus	658
DQ889097	Malacostraca	Decapoda	Dromiidae	_	644
DQ889118	Malacostraca	Amphipoda	Epimeriidae	Paramphithoe hystrix	644
AB091772	Maxillopoda	Calanoida	Eucalanidae	Eucalanus bungii	900
AF531749	Maxillopoda	Calanoida	Euchaetidae	Paraeuchaeta biloba	618
DQ889098	Malacostraca	Euphausiacea	Euphausiidae	Euphausia superba	633
DQ889127	Malacostraca	Amphipoda	Eusiridae	Rhachotropis aculeata	641
DQ882090	Malacostraca	Decapoda	Galatheidae	Munida quadrispina	658
DQ889100	Malacostraca	Amphipoda	Gammaridae	Gammarus lacustris	654
DQ889101	Malacostraca	Decapoda	Gnathophyllidae	Gnathophyllum americanus	657
AF048822	Malacostraca	Stomatopoda	Gonodactylidae	Gonodactylus graphurus	645
AF317338	Malacostraca	Decapoda	Grapsidae	Grapsus albolineatus	573
AF520447	Malacostraca	Cumacea	Gynodiastylidae	Gynodiastylis sp.	657
L43049	Maxillopoda	Harpacticoida	Harpactidae	Tigriopus californicus	606
AF205252	Malacostraca	Stomatopoda	Hemisquillidae	Hemisquilla ensigera	645
AF531745	Maxillopoda	Calanoida	Heterorhabdidae	Heterorhabdus farrani	642
AF048823	Malacostraca	Stomatopoda	Heterosquillidae	Heterosquilla tricarinata	655
DQ882084	Malacostraca	Decapoda	Hippolytidae	Lebbeus groenlandicus	505
DQ889102	Branchiopoda	Cladocera	Holopedidae	Holopedium gibberum	639
AF370852	Cephalocarida	Brachypoda	Hutchinsoniellidae	Hutchinsoniella macracantha	634
AY152752	Malacostraca	Amphipoda	Hyalellidae	Hyalella sp.	637
AY639937	Malacostraca	Amphipoda	Hyalidae	Parhyale hawaiiensis	900
DQ889133	Malacostraca	Amphipoda	Hyperiidae	Themisto gaudichaudii	657
DQ889111	Malacostraca	Isopoda	Idoteidae	Mesidotea entomon	657
AF451354	Malacostraca	Amphipoda	Iphimediidae	Gnathiphimedia sexdentata	624
DQ889106	Malacostraca	Amphipoda	Ischyroceridae	Ischyrocerus latipes	643
AF352297	Malacostraca	Cumacea	Lampropidae	Lampropis quadriplicata	626
AF436030	Malacostraca	Decapoda	Laomediidae	Jaxea nocturna	593
DQ889131	Malacostraca	Mysidacea	Lepidomysidae	Tasmanomysis oculata	633
DQ889107	Branchiopoda	Cladocera	Leptodoridae	Leptodora kindtii	638
AF137516	Malacostraca	Cumacea	Leuconidae	Eudorella pusilla	657
DQ889130	Maxillopoda	Cyclopoida	Lichomolgidae	Stellicola sp.	654

Table A1 (continued).

GenBank accession No.	Class	Order	Family	Species	Length
AF255780	Malacostraca	Isopoda	Ligiidae	Ligia occidentalis	583
AJ534412	Ostracoda	Podocopida	Limnocytheridae	Limnocythere inopinata	533
DQ882086	Malacostraca	Decapoda	Lithodidae	Lithodes couesi	639
DQ889115	Malacostraca	Lophogastrida	Lophogastridae	Neognathophausia ingens	630
DQ889108	Malacostraca	Decapoda	Luciferidae	Lucifer sp.	656
DQ889109	Branchiopoda	Diplostraca	Lynceidae	Lynceus sp.	639
DQ889077	Malacostraca	Amphipoda	Lysianassidae	Anonyx nugax	643
DQ889117	Branchiopoda	Cladocera	Macrothricidae	Ophryoxus gracilis	639
DQ889114	Malacostraca	Decapoda	Majidae	Naxia sp.	657
AF474106	Maxillopoda	Calanoida	Metridinidae	Metridia lucens	648
DQ889112	Branchiopoda	Cladocera	Moinidae	Moina sp.	639
DQ889119	Malacostraca	Mysidacea	Mysidae	Paramysis intermedia	618
AF520450	Malacostraca	Cumacea	Nannastacidae	Campylaspis sp.	657
AF125435	Malacostraca	Decapoda	Nematocarcinidae	Nematocarcinus ensifer	600
DQ889104	Malacostraca	Decapoda	Nephropidae	Homarus americanus	654
DQ889116	Ostracoda	Podocopida	Notodromadidae	Notodromas monacha	523
AF205234	Malacostraca	Stomatopoda	Odontodactylidae	Odontodactylus scyllarus	644
EF432738	Malacostraca	Amphipoda	Oedicerotidae	Monoculodes borealis	644
DQ882168	Malacostraca	Decapoda	Oplophoridae	Systellaspis braueri	654
DQ882047	Malacostraca	Decapoda	Oregoniidae	Chionoecetes bairdi	658
NC_003058	Malacostraca	Decapoda	Paguridae	Pagurus longicarpus	657
DQ889110	Malacostraca	Decapoda	Palaemonidae	Macrobrachium sp.	656
NC_004251	Malacostraca	Decapoda	Palinuridae	Panulirus japonicus	657
DQ882111	Malacostraca	Decapoda	Pandalidae	Pandalus danae	658
DQ882143	Malacostraca	Decapoda	Panopeidae	Rhithropanopeus harrisii	658
AF474110	Maxillopoda	Calanoida	Paracalanidae	Paracalanus parvus	648
AF493624	Malacostraca	Decapoda	Parastacidae	Cherax crassimanus	600
DQ882133	Malacostraca	Decapoda	Pasiphaeidae	Pasiphaea pacifica	658
AF217843	Malacostraca	Decapoda	Penaeidae	Penaeus monodon	657
AF255775	Malacostraca	Isopoda	Phreatoicidae	Colubotelson thomsoni	583
AF317341	Malacostraca	Decapoda	Plagusiidae	Plagusia immaculata	573
DQ889099	Branchiopoda	Cladocera	Podonidae	Evadne spinifera	639
AF209063	Branchiopoda	Anostraca	Polyartemiidae	Polyartemiella hazeni	639
DQ889121	Branchiopoda	Cladocera	Polyphemidae	Polyphemus pediculus	639
AY145429	Maxillopoda	Calanoida	Pontellidae	Calanopia thompsoni	624
AY189478	Malacostraca	Amphipoda	Pontogammaridae	Obesogammarus crassus	654
DQ889122	Malacostraca	Amphipoda	Pontoporeiidae	Pontoporeia femorata	653
DQ889123	Malacostraca	Isopoda	Porcellionidae	Porcellio spinicornis	654
DQ889124	Malacostraca	Decapoda	Portunidae	Portunus pelagicus	657
AF399980	Malacostraca	Decapoda	Potamidae	Potamon fluviatilis	539
AF205253	Malacostraca	Stomatopoda	Protosquillidae	Chorisquilla excavata	644
AF137514	Malacostraca	Cumacea	Pseudocumatidae	Pseudocuma similis	657
AY145436	Maxillopoda	Calanoida	Pseudodiaptomidae	Pseudodiaptomus marinus	624
AF205245	Malacostraca	Stomatopoda	Pseudosquillidae	Pseudosquilla ciliata	646
AF346400	Malacostraca	Decapoda	Raninidae	Ranina ranina	632
AY456188	Maxillopoda	Pedunculata	Scalpellidae	Pollicipes polymerus	658
DQ889105	Malacostraca	Decapoda	Scyllaridae	Ibacus peronii	654
DQ882149	Malacostraca	Decapoda	Sergestidae	Sergestes similis	658
DQ889129	Branchiopoda	Diplostraca	Sididae	Sida crystallina	639
AF370851	Remipedia	Nectiopoda	Speleonectidae	Speleonectes gironensis	613
AF255785	Malacostraca	Isopoda	Sphaeromatidae	Sphaeroma quadridentatum	544
AF531751	Maxillopoda	Calanoida	Spinocalanidae	Spinocalanus abyssalis	507
NC_006081	Malacostraca	Stomatopoda	Squillidae	Squilla mantis	658
AF125441	Malacostraca	Decapoda	Stenopodidae	Stenopus hispidus	600
AF531752	Maxillopoda	Calanoida	Stephidae	Stephos longipes	621
AF209065	Branchiopoda	Anostraca	Streptocephalidae	Streptocephalus dorothae	639
DQ889103	Malacostraca	Decapoda	Sundathelphusidae	Holthuisana transversa	653

 Table A1 (concluded).

GenBank accession No.	Class	Order	Family	Species	Length
AF205257	Malacostraca	Stomatopoda	Takuidae	Taku spinosocarinatus	647
AY152751	Malacostraca	Amphipoda	Talitridae	Orchestia uhleri	637
DQ889132	Maxillopoda	Calanoida	Temoridae	Temora stylifera	636
AB126701	Maxillopoda	Sessilia	Tetraclitidae	Tetraclita japonica	658
AF209066	Branchiopoda	Anostraca	Thamnocephalidae	Thamnocephalus platyurus	639
AF474112	Maxillopoda	Calanoida	Tortanidae	Tortanus derjugini	617
DQ889134	Malacostraca	Decapoda	Trapeziidae	Trapezia rufopunctata	644
DQ889135	Branchiopoda	Notostraca	Triopsidae	Triops australiensis	639
DQ882062	Malacostraca	Decapoda	Varunidae	Eriocheir sinensis	623
DQ889081	Malacostraca	Decapoda	Xanthidae	Atergatis floridus	656
DQ889113	Ostracoda	Myodocopida	_		655

Table A2. List of 100 specimens used as test taxa in the amino acid profile of the crustacea.

GenBank accession No.	Class	Order	Family	Species	Length
DQ889136	Branchiopoda	Cladocera	Macrothricidae	Acantholeberis curvirostris	639
DQ889137	Branchiopoda	Cladocera	Chydoridae	Acroperus harpae	639
DQ889138	Branchiopoda	Cladocera	Chydoridae	Alona setulosa	639
DQ889139	Branchiopoda	Cladocera	Chydoridae	Alonella exigua	639
DQ882032	Malacostraca	Decapoda	Crangonidae	Argis lar	658
AY456187	Maxillopoda	Arguloida	Argulidae	Argulus americanus	658
AY531772	Malacostraca	Isopoda	Asellidae	Asellus aquaticus	651
AF308940	Branchiopoda	Anostraca	Thamnocephalidae	Branchinella pinnata	639
DQ889140	Branchiopoda	Diplostraca	Cercopagididae	Bythotrephes sp.	639
AF332791	Maxillopoda	Calanoida	Calanidae	Calanoides acutus	639
AY428047	Maxillopoda	Pedunculata	Scalpellidae	Calantica spinosa	677
DQ889141	Malacostraca	Amphipoda	Caprellidae	Caprella unica	641
AY616445	Malacostraca	Decapoda	Portunidae	Carcinus aestuarii	498
DQ889142	Maxillopoda	Calanoida	Centropagidae	Centropages furcatus	636
AY188999	Branchiopoda	Anostraca	Chirocephalidae	Chirocephalus ruffoi	654
DQ882053	Malacostraca	Decapoda	Majidae	Chorilia longipes	655
AF234819	Maxillopoda	Sessilia	Chthamalidae	Chthamalus anisopoma	656
AF462313	Maxillopoda	Calanoida	Clausocalanidae	Clausocalanus minor	648
AF520446	Malacostraca	Cumacea	Diastylidae	Colurostylis longicaudata	658
DQ882057	Malacostraca	Decapoda	Crangonidae	Crangon alaskensis	658
AF255776	Malacostraca	Isopoda	Phreatoicidae	Crenoicus buntiae	580
AF332789	Maxillopoda	Calanoida	Calanidae	Ctenocalanus citer	639
AF520449	Malacostraca	Cumacea	Nannastacidae	Cumella sp.	658
DQ889143	Branchiopoda	Diplostraca	Sididae	Diaphanosoma sp.	639
AF137510	Malacostraca	Cumacea	Diastylidae	Diastylis sculpta	658
DQ889144	Malacostraca	Amphipoda	Pontoporeiidae	Diporeia hoyi	649
DQ889145	Maxillopoda	Calanoida	Clausocalanidae	Drepanopus sp.	621
DQ889146	Branchiopoda	Cladocera	Macrothricidae	Drepanothrix dentata	639
AF451352	Malacostraca	Amphipoda	Iphimediidae	Echiniphimedia echinata	624
DQ889147	Malacostraca	Amphipoda	Gammaridae	Echinogammarus ischnus	640
AF493633	Malacostraca	Decapoda	Parastacidae	Engaeus strictifrons	600
AF520445	Malacostraca	Cumacea	Bodotriidae	Eocuma longicorne	657
AF451342	Malacostraca	Amphipoda	Epimeriidae	Epimeria reoproi	644
DQ889148	Malacostraca	Amphipoda	Ischyroceridae	Ericthonius sp.	644
DQ882073	Malacostraca	Decapoda	Hippolytidae	Eualus biunguis	624
AF209061	Branchiopoda	Anostraca	Chirocephalidae	Eubranchipus sp.	639
AF234820	Maxillopoda	Sessilia	Chthamalidae	Euraphia eastropacensis	598
DQ889149	Branchiopoda	Cladocera	Chydoridae	Eurycercus longirostris	639
AY145427	Maxillopoda	Calanoida	Temoridae	Eurytemora pacifica	624

Table A2 (continued).

GenBank accession No.	Class	Order	Family	Species	Length
DQ889150	Malacostraca	Amphipoda	Eusiridae	Eusirus cuspidatus	644
DQ889151	Malacostraca	Isopoda	Sphaeromatidae	Exosphaeroma sp.	654
AF395115	Malacostraca	Decapoda	Penaeidae	Fenneropenaeus sp.	657
AF255781	Malacostraca	Isopoda	Idoteidae	Glyptidotea lichtensteini	574
AF205231	Malacostraca	Stomatopoda	Gonodactylidae	Gonodactylellus hendersoni	648
AF205224	Malacostraca	Stomatopoda	Gonodactylidae	Gonodactylinus viridis	627
AF205242	Malacostraca	Stomatopoda	Gonodactylidae	Gonodactylopsis komodoensis	645
DQ889152	Branchiopoda	Cladocera	Chydoridae	Graptoleberis testudinaria	639
AF205239	Malacostraca	Stomatopoda	Protosquillidae	Haptosquilla glyptocercus	646
AF317340	Malacostraca	Decapoda	Varunidae	Hemigrapsus sanguineus	573
AF061781	Malacostraca	Cumacea	Lampropidae	Hemilamprops californicus	658
DQ882079	Malacostraca	Decapoda	Oregoniidae	Hyas lyratus	658
DQ889153	Malacostraca	Amphipoda	Hyperiidae	Hyperia galba	643
DQ889154	Malacostraca	Amphipoda	Lysianassidae	Ichnopus spinicornis	626
DO889155	Malacostraca	Isopoda	Idoteidae	Idotea granulosa	636
AF451347	Malacostraca	Amphipoda	Iphimediidae	Iphimediella rigida	618
AF339473	Malacostraca	Decapoda	Palinuridae	Jasus edwardsii	639
AY145428	Maxillopoda	Calanoida	Pontellidae	Labidocera rotunda	624
DQ889156	Branchiopoda	Notostraca	Triopsidae	<i>Lepidurus</i> sp.	639
AF520444	Malacostraca	Cumacea	Bodotriidae	Leptocuma sp.	633
DQ889157	Branchiopoda	Diplostraca	Limnadiidae	Limnadia sp.	639
DO889158	Maxillopoda	Calanoida	Centropagidae	Limnocalanus macrurus	631
DO889159	Malacostraca	Mysidacea	Mysidae	Limnomvsis benedeni	634
AF260843	Malacostraca	Isopoda	Cymothoidae	Lironeca vulgaris	617
DO882088	Malacostraca	Decapoda	Lithodidae	Lopholithodes foraminatus	658
DO889160	Branchiopoda	Cladocera	Macrothricidae	Macrothrix sp.	639
AF137520	Malacostraca	Cumacea	Bodotriidae	Mancocuma stellifera	675
AJ319742	Ostracoda	Podocopida	Cyprididae	Mesocyprideis irsacae	462
DO889161	Malacostraca	Mysidacea	Mysidae	Mysis americana	654
DO889162	Ostracoda	Podocopida	Cyprididae	Mytilocypris ambiguosa	656
AF332793	Maxillopoda	Calanoida	Calanidae	Nannocalanus minor	613
AF513650	Maxillopoda	Calanoida	Calanidae	Neocalanus robustior	639
AF205235	Malacostraca	Stomatopoda	Gonodactvlidae	Neogonodactvlus bredini	648
DO882094	Malacostraca	Decapoda	Oplophoridae	Notostomus japonicus	647
DO889163	Malacostraca	Euphausiacea	Euphausiidae	Nyctiphanes australis	633
AY428049	Maxillopoda	Sessilia	Chthamalidae	Octomeris angulosa	639
DO889164	Malacostraca	Amphipoda	Lysianassidae	Onisimus glacialis	639
DO889165	Malacostraca	Decapoda	Cambaridae	Orconectes propinguus	653
DO889166	Maxillopoda	Calanoida	Centropagidae	Osphranticum labronectum	636
AF137512	Malacostraca	Cumacea	Diastylidae	Oxvurostvlis smithi	658
DO882103	Malacostraca	Decapoda	Palaemonidae	Palaemon elegans	658
DO882106	Malacostraca	Decapoda	Pandalidae	Pandalopsis dispar	657
DO356574	Maxillopoda	Calanoida	Centropagidae	Parabroteas sarsia	636
AF052393	Malacostraca	Mysidacea	Mysidae	Paramesopodopsis rufa	651
AF255783	Malacostraca	Isopoda	Idoteidae	Paridotea ungulata	564
DO889167	Branchiopoda	Cladocera	Podonidae	Pleopis sp.	639
DO889168	Branchiopoda	Cladocera	Chydoridae	Pleuroxus denticulatus	639
DO889169	Branchiopoda	Cladocera	Podonidae	Podon leuckarti	639
AF352302	Malacostraca	Cumacea	Bodotriidae	Pomacuma australiae	675
DO889170	Malacostraca	Amphipoda	Gammaridae	Pontogammarus maeoticus	657
AF283874	Malacostraca	Decapoda	Galatheidae	Ravmunida dextralis	657
AF531746	Maxillopoda	Calanoida	Eucalanidae	Rhincalanus gigas	633
DO889171	Branchiopoda	Diplostraca	Daphniidae	Scapholeberis rammeri	639
D0889172	Branchiopoda	Diplostraca	Daphniidae	Simocephalus vetulus	639
AF260846	Malacostraca	Isopoda	Sphaeromatidae	Sphaeramene polytylotus	579
DO882157	Malacostraca	Decanoda	Hippolytidae	Spirontocaris lamellicornis	658
AF052394	Malacostraca	Mysidacea	Mysidae	Tenagomysis australis	645
			J		~ . •

 Table A2 (concluded).

GenBank accession No.	Class	Order	Family	Species	Length
AY430813	Maxillopoda	Sessilia	Chthamalidae	Tetrachthamalus oblitteratus	603
DQ889173	Malacostraca	Decapoda	Scyllaridae	Thenus orientalis	657
AF352301	Malacostraca	Cumacea	Bodotriidae	Vaunthompsonia cristata	658
DQ889174	Malacostraca	Amphipoda	Gammaridae	Weiprechtia pinguis	644

ty Institute	
he Biodiversi	
f archive at t	
, type o	
of collection	
ir country	
er with the	
, togethe	
uis study	
ed in th	
ere acquir	
codes w	
COI bard	
which (ce length
iens for	sequence
d specim	sed, and
^c decapo	r pair us
List of	, prime
able A3.	f Ontario
	0

or Ontario, primer pair use	u, anu sequence rengi	П.					
GenBank accession No.	Process ID	Species	Family	Country	Archive type	Primer pair ^a	Length
DQ882026	FCDPA135-04	Acantholithodes hispidus	Lithodidae	Canada	Specimen	FolA-FolB	658
DQ882029	FCDPA020-04	Argis alaskensis	Crangonidae	Canada	Specimen	FolA-FolB	658
DQ882028	FCDPA021-04	Argis alaskensis	Crangonidae	Canada	Specimen	FolA-FolB	654
DQ882027	FCDPA106-04	Argis alaskensis	Crangonidae	Canada	Specimen	FolA-FolB	658
DQ882032	FCDPA022-04	Argis lar	Crangonidae	Canada	Specimen	CrustF1-FolB	658
DQ882031	FCDPA023-04	Argis lar	Crangonidae	Canada	Specimen	CrustF1-FolB	658
DQ882030	FCDPA107-04	Argis lar	Crangonidae	Canada	Specimen	FolA-FolB	650
DQ882033	FCDPA050-04	Bentheogennema borealis	Benthesicymidae	Canada	Tissue	FolA-FolB	618
DQ882034	FCDPA051-04	Bentheogennema borealis	Benthesicymidae	Canada	Tissue	FolA-FolB	616
DQ882035	FCDPA111-04	Calocarides spinulicauda	Axiidae	Canada	Specimen	FolA-FolB	638
DQ882037	FCDPA052-04	Calocaris investigatoris	Calocarididae	Canada	Tissue	FolA-FolB	658
DQ882036	FCDPA053-04	Calocaris investigatoris	Calocarididae	Canada	Tissue	FolA-FolB	614
DQ882040	FCDPA061-04	Cancer magister	Cancridae	Canada	Tissue	CrustF1-FolB	655
DQ882038	FCDPA150-04	Cancer magister	Cancridae	Canada	Tissue	FolA-FolB	624
DQ882039	FCDPA151-04	Cancer magister	Cancridae	Canada	Tissue	FolA-FolB	638
DQ882041	FCDPA062-04	Cancer oregonensis	Cancridae	Canada	Tissue	CrustF1-FolB	616
DQ882042	FCDPA063-04	Cancer oregonensis	Cancridae	Canada	Tissue	CrustF1-FolB	511
DQ882044	FCDPA166-05	Cancer productus	Cancridae	Canada	Tissue	FolA-FolB	658
DQ882043	FCDPA064-04	Cancer productus	Cancridae	Canada	Tissue	FolA-FolB	605
DQ882045	FCDPA065-04	Chionoecetes angulatus	Oregoniidae	Canada	Tissue	FolA-FolB	620
DQ882046	FCDPA066-04	Chionoecetes angulatus	Oregoniidae	Canada	Tissue	FolA-FolB	520
DQ882049	FCDPA067-04	Chionoecetes bairdi	Oregoniidae	Canada	Tissue	FolA-FolB	652
DQ882048	FCDPA068-04	Chionoecetes bairdi	Oregoniidae	Canada	Tissue	CrustF1-FolB	643
DQ882047	FCDPA138-04	Chionoecetes bairdi	Oregoniidae	Canada	Specimen	FolA-FolB	658
DQ882051	FCDPA069-04	Chionoecetes tanneri	Oregoniidae	Canada	Tissue	FolA-FolB	523
DQ882050	FCDPA070-04	Chionoecetes tanneri	Oregoniidae	Canada	Tissue	FolA-FolB	656
DQ882054	FCDPA072-04	Chorilia longipes	Majidae	Canada	Specimen	CrustF1-FolB	552
DQ882053	FCDPA073-04	Chorilia longipes	Majidae	Canada	Tissue	FolA-FolB	655
DQ882052	FCDPA139-04	Chorilia longipes	Majidae	Canada	Specimen	FolA-FolB	656
DQ882055	FCDPA024-04	Crangon abyssorum	Crangonidae	Canada	Tissue	FolA-FolB	653
DQ882056	FCDPA025-04	Crangon abyssorum	Crangonidae	Canada	Tissue	FolA-FolB	645
DQ882057	FCDPA116-04	Crangon alaskensis	Crangonidae	Canada	Specimen	CrustF1-FolB	658
DQ882058	FCDPA117-04	Crangon alaskensis	Crangonidae	Canada	Specimen	FolA-FolB	655
DQ882060	FCDPA026-04	Crangon communis	Crangonidae	Canada	Specimen	CrustF1-FolB	574
DQ882061	FCDPA027-04	Crangon communis	Crangonidae	Canada	Specimen	CrustF1–FolB	658
DQ882059	FCDPA154-04	Crangon communis	Crangonidae	Canada	Specimen	CrustF1-FolB	630
DQ882062	FCDPA074-04	Eriocheir sinensis	Varunidae	Poland	Tissue	CrustF1-FolB	623
DQ882065	FCDPA123-04	Eualus avinus	Hippolytidae	Canada	Specimen	FolA-FolB	658
DQ882064	FCDPA124-04	Eualus avinus	Hippolytidae	Canada	Specimen	FolA-FolB	658
DQ882063	FCDPA125-04	Eualus avinus	Hippolytidae	Canada	Specimen	FolA-FolB	658
DQ882069	FCDPA034-04	Eualus barbatus	Hippolytidae	Canada	Specimen	FolA-FolB	651
DQ882070	FCDPA035-04	Eualus barbatus	Hippolytidae	Canada	Specimen	FolA-FolB	658

© 2007 NRC Canada

GenBank accession No.	Process ID	Species	Family	Country	Archive type	Primer pair ^a	Length
DQ882066	FCDPA109-04	Eualus barbatus	Hippolytidae	Canada	Specimen	FolA-FolB	645
DQ882067	FCDPA110-04	Eualus barbatus	Hippolytidae	Canada	Specimen	FolA-FolB	639
DQ882068	FCDPA140-04	Eualus barbatus	Hippolytidae	Canada	Specimen	FolA-FolB	643
DQ882074	FCDPA036-04	Eualus biunguis	Hippolytidae	Canada	Tissue	FolA-FolB	658
DQ882073	FCDPA037-04	Eualus biunguis	Hippolytidae	Canada	Tissue	FolA-FolB	624
DQ882072	FCDPA038-04	Eualus biunguis	Hippolytidae	Canada	Tissue	FolA-FolB	615
DQ882071	FCDPA039-04	Eualus biunguis	Hippolytidae	Canada	Tissue	FolA-FolB	624
DQ882075	FCDPA087-04	Eualus gaimardi	Hippolytidae	Canada	Specimen	FolA-FolB	629
DQ882078	FCDPA040-04	Eualus suckleyi	Hippolytidae	Canada	Tissue	FolA-FolB	624
DQ882076	FCDPA126-04	Eualus suckleyi	Hippolytidae	Canada	Specimen	FolA-FolB	656
DQ882077	FCDPA127-04	Eualus suckleyi	Hippolytidae	Canada	Specimen	FolA-FolB	657
DQ882079	FCDPA071-04	Hyas lyratus	Oregoniidae	Canada	Tissue	FolA-FolB	658
DQ882080	FCDPA130-04	Hymenodora frontalis	Oplophoridae	Canada	Tissue	FolA-FolB	658
DQ882081	FCDPA141-04	Hymenodora frontalis	Oplophoridae	Canada	Tissue	FolA-FolB	608
DQ882084	FCDPA081-04	Lebbeus groenlandicus	Hippolytidae	Canada	Specimen	FolA-FolB	639
DQ882083	FCDPA032-04	Lebbeus groenlandicus	Hippolytidae	Canada	Tissue	FolA-FolB	505
DQ882082	FCDPA033-04	Lebbeus groenlandicus	Hippolytidae	Canada	Tissue	FolA-FolB	614
DQ882086	FCDPA054-04	Lithodes couesi	Lithodidae	Canada	Tissue	FolA-FolB	639
DQ882085	FCDPA055-04	Lithodes couesi	Lithodidae	Canada	Tissue	FolA-FolB	619
DQ882089	FCDPA056-04	Lopholithodes foraminatus	Lithodidae	Canada	Tissue	CrustF1-FolB	638
DQ882088	FCDPA136-04	Lopholithodes foraminatus	Lithodidae	Canada	Tissue	FolA-FolB	658
DQ882087	FCDPA148-04	Lopholithodes foraminatus	Lithodidae	Canada	Tissue	CrustF1-FolB	642
DQ882090	FCDPA058-04	Munida quadrispina	Galatheidae	Canada	Tissue	FolA-FolB	658
DQ882092	FCDPA059-04	Munida quadrispina	Galatheidae	Canada	Specimen	FolA-FolB	658
DQ882091	FCDPA060-04	Munida quadrispina	Galatheidae	Canada	Tissue	FolA-FolB	603
DQ882093	FCDPA137-04	Munidopsis quadrata	Galatheidae	Canada	Tissue	FolA-FolB	658
DQ882094	FCDPA131-04	Notostomus japonicus	Oplophoridae	Canada	Tissue	FolA-FolB	647
DQ882095	FCDPA089-04	Orconectes immunis	Cambaridae	Canada	Specimen	FolA-FolB	632
DQ882096	FCDPA075-04	Orconectes limosus	Cambaridae	Canada	Tissue	CrustF1-FolB	632
DQ882097	FCDPA134-04	Paguristes turgidus	Diogenidae	Canada	Specimen	FolA-FolB	658
DQ882100	FCDPA145-04	Paguristes turgidus	Diogenidae	Canada	Specimen	FolA-FolB	614
DQ882099	FCDPA146-04	Paguristes turgidus	Diogenidae	Canada	Specimen	FolA-FolB	645
DQ882098	FCDPA147-04	Paguristes turgidus	Diogenidae	Canada	Specimen	FolA-FolB	643
DQ882101	FCDPA160-05	Palaemon sp.	Palaemonidae	Poland	Specimen	FolA-FolB	658
DQ882103	FCDPA157-05	Palaemon elegans	Palaemonidae	Poland	Specimen	FolA-FolB	658
DQ882104	FCDPA158-05	Palaemon elegans	Palaemonidae	Poland	Specimen	FolA-FolB	658
DQ882102	FCDPA159-05	Palaemon elegans	Palaemonidae	Poland	Specimen	FolA-FolB	658
DQ882105	FCDPA161-05	Palaemon elegans	Palaemonidae	Poland	Specimen	FolA-FolB	658
DQ882107	FCDPA018-04	Pandalopsis dispar	Pandalidae	Canada	Specimen	FolA-FolB	654
DQ882108	FCDPA019-04	Pandalopsis dispar	Pandalidae	Canada	Specimen	FolA-FolB	653
DQ882106	FCDPA105-04	Pandalopsis dispar	Pandalidae	Canada	Specimen	FolA-FolB	657
DQ882112	FCDPA001-04	Pandalus danae	Pandalidae	Canada	Tissue	FolA-FolB	626
DQ882111	FCDPA113-04	Pandalus danae	Pandalidae	Canada	Specimen	FolA-FolB	658

 Table A3 (continued).

GenBank accession No.	Process ID	Species	Family	Country	Archive type	Primer pair ^a	Length
DQ882110	FCDPA114-04	Pandalus danae	Pandalidae	Canada	Specimen	FolA-FolB	654
DQ882109	FCDPA115-04	Pandalus danae	Pandalidae	Canada	Specimen	FolA-FolB	654
DQ882113	FCDPA002-04	Pandalus goniurus	Pandalidae	Canada	Tissue	FolA-FolB	614
DQ882116	FCDPA003-04	Pandalus hypsinotus	Pandalidae	Canada	Tissue	FolA-FolB	604
DQ882115	FCDPA004-04	Pandalus hypsinotus	Pandalidae	Canada	Tissue	FolA-FolB	656
DQ882114	FCDPA005-04	Pandalus hypsinotus	Pandalidae	Canada	Tissue	FolA-FolB	658
DQ882118	FCDPA006-04	Pandalus jordani	Pandalidae	Canada	Specimen	CrustF1-FolB	652
DQ882117	FCDPA007-04	Pandalus jordani	Pandalidae	Canada	Specimen	CrustF1-FolB	613
DQ882120	FCDPA008-04	Pandalus jordani	Pandalidae	Canada	Specimen	CrustF1-FolB	658
DQ882119	FCDPA009-04	Pandalus jordani	Pandalidae	Canada	Specimen	CrustF1-FolB	658
DQ882121	FCDPA010-04	Pandalus mortagui tridens	Pandalidae	Canada	Tissue	CrustF1-FolB	616
DQ882123	FCDPA011-04	Pandalus mortagui tridens	Pandalidae	Canada	Tissue	CrustF1-FolB	618
DQ882122	FCDPA012-04	Pandalus mortagui tridens	Pandalidae	Canada	Tissue	CrustF1-FolB	615
DQ882126	FCDPA013-04	Pandalus platyceros	Pandalidae	Canada	Specimen	CrustF1-FolB	538
DQ882125	FCDPA014-04	Pandalus platyceros	Pandalidae	Canada	Specimen	CrustF1-FolB	658
DQ882124	FCDPA153-04	Pandalus platyceros	Pandalidae	Canada	Specimen	CrustF1-FolB	643
DQ882129	FCDPA015-04	Pandalus stenolepis	Pandalidae	Canada	Specimen	FolA-FolB	602
DQ882128	FCDPA016-04	Pandalus stenolepis	Pandalidae	Canada	Specimen	CrustF2–FolB	653
DQ882127	FCDPA017-04	Pandalus stenolepis	Pandalidae	Canada	Specimen	FolA-FolB	617
DQ882130	FCDPA057-04	Paralomis multispina	Lithodidae	Canada	Tissue	FolA-FolB	615
DQ882133	FCDPA041-04	Pasiphaea pacifica	Pasiphaeidae	Canada	Specimen	CrustF1-FolB	658
DQ882134	FCDPA042-04	Pasiphaea pacifica	Pasiphaeidae	Canada	Specimen	CrustF1-FolB	648
DQ882135	FCDPA043-04	Pasiphaea pacifica	Pasiphaeidae	Canada	Specimen	CrustF1-FolB	657
DQ882132	FCDPA128-04	Pasiphaea pacifica	Pasiphaeidae	Canada	Specimen	FolA-FolB	629
DQ882131	FCDPA129-04	Pasiphaea pacifica	Pasiphaeidae	Canada	Specimen	FolA-FolB	658
DQ882137	FCDPA044-04	Pasiphaea tarda	Pasiphaeidae	Canada	Tissue	FolA-FolB	616
DQ882136	FCDPA045-04	Pasiphaea tarda	Pasiphaeidae	Canada	Tissue	CrustF2–FolB	656
DQ882139	FCDPA047-04	Pasiphaea tarda	Pasiphaeidae	Canada	Specimen	CrustF2–FolB	658
DQ882138	FCDPA048-04	Pasiphaea tarda	Pasiphaeidae	Canada	Specimen	CrustF2–FolB	641
DQ882143	FCDPA162-05	Rhithropanopeus harrisii	Panopeidae	Poland	Specimen	FolA-FolB	658
DQ882142	FCDPA163-05	Rhithropanopeus harrisii	Panopeidae	Poland	Specimen	FolA-FolB	658
DQ882140	FCDPA164-05	Rhithropanopeus harrisii	Panopeidae	Poland	Specimen	FolA-FolB	658
DQ882141	FCDPA165-05	Rhithropanopeus harrisii	Panopeidae	Poland	Specimen	FolA-FolB	658
DQ882144	FCDPA079-04	Sclerocrangon boreas	Crangonidae	Canada	Specimen	FolA-FolB	629
DQ882145	FCDPA080-04	Sclerocrangon boreas	Crangonidae	Canada	Specimen	FolA-FolB	629
DQ882146	FCDPA082-04	Sclerocrangon boreas	Crangonidae	Canada	Specimen	FolA-FolB	564
DQ882148	FCDPA086-04	Sclerocrangon boreas	Crangonidae	Canada	Specimen	FolA-FolB	658
DQ882147	FCDPA088-04	Sclerocrangon boreas	Crangonidae	Canada	Specimen	FolA-FolB	659
DQ882150	FCDPA142-04	Sergestes similis	Sergestidae	Canada	Specimen	FolA-FolB	646
DQ882152	FCDPA143-04	Sergestes similis	Sergestidae	Canada	Specimen	FolA-FolB	648
DQ882151	FCDPA144-04	Sergestes similis	Sergestidae	Canada	Specimen	FolA-FolB	647
DQ882149	FCDPA133-04	Sergestes similis	Sergestidae	Canada	Specimen	FolA-FolB	658
DQ882154	FCDPA028-04	Spirontocaris holmesi	Hippolytidae	Canada	Specimen	CrustF1-FolB	657

 Table A3 (continued).

GenBank accession No.	Process ID	Species	Family	Country	Archive type	Primer pair ^a	Length
DQ882153	FCDPA119-04	Spirontocaris holmesi	Hippolytidae	Canada	Specimen	FolA-FolB	658
DQ882156	FCDPA029-04	Spirontocaris lamellicornis	Hippolytidae	Canada	Specimen	CrustF1-FolB	626
DQ882155	FCDPA030-04	Spirontocaris lamellicornis	Hippolytidae	Canada	Specimen	CrustF1-FolB	621
DQ882157	FCDPA031-04	Spirontocaris lamellicornis	Hippolytidae	Canada	Specimen	CrustF1-FolB	658
DQ882158	FCDPA077-04	Spirontocaris phippsi	Hippolytidae	Canada	Specimen	FolA-FolB	589
DQ882159	FCDPA084-04	Spirontocaris phippsi	Hippolytidae	Canada	Specimen	FolA-FolB	629
DQ882162	FCDPA120-04	Spirontocaris sica	Hippolytidae	Canada	Specimen	FolA-FolB	657
DQ882161	FCDPA121-04	Spirontocaris sica	Hippolytidae	Canada	Specimen	FolA-FolB	658
DQ882160	FCDPA122-04	Spirontocaris sica	Hippolytidae	Canada	Specimen	FolA-FolB	658
DQ882163	FCDPA085-04	Spirontocaris spinus	Hippolytidae	Canada	Specimen	FolA-FolB	659
DQ882164	FCDPA099-04	Synalpheus sp.	Alpheidae	Australia	Specimen	FolA-FolB	653
DQ882166	FCDPA100-04	Synalpheus sp.	Alpheidae	Australia	Specimen	FolA-FolB	658
DQ882165	FCDPA101-04	Synalpheus sp.	Alpheidae	Australia	Specimen	FolA-FolB	659
DQ882167	FCDPA103-04	Synalpheus sp.	Alpheidae	Australia	Specimen	FolA-FolB	658
DQ882168	FCDPA049-04	Systellaspis braueri	Oplophoridae	Canada	Tissue	FolA-FolB	654
DQ882171	FCDPA091-04	Uca sp.	Ocypodidae	Australia	Specimen	FolA-FolB	629
DQ882169	FCDPA104-04	Uca sp.	Ocypodidae	Australia	Specimen	FolA-FolB	658
DQ882170	FCDPA152-04	Uca sp.	Ocypodidae	Australia	Specimen	CrustF1-FolB	632
^a Primer FolA corresponds to	LCO1490; FolB corresp	oonds to HCO2198.					

spc spo

Table A3 (concluded).

Costa et al.

AF316537

AF317332

AF105247

GenBank accession No.	Species	Family	Length
AF283888	Agononida incerta	Galatheidae	657
AF283889	Agononida incerta	Galatheidae	657
AB128829	Alvinocaris sp.	Bresiliidae	657
AY465911	Callinectes arcuatus	Portunidae	657
AY465913	Callinectes arcuatus	Portunidae	657
AY465907	Callinectes bellicosus	Portunidae	657
AY465909	Callinectes bellicosus	Portunidae	657
AY363392	Callinectes sapidus	Portunidae	658
AY465915	Callinectes sapidus	Portunidae	657
AY682072	Callinectes sapidus	Portunidae	658
AY682073	Callinectes sapidus	Portunidae	658
AY682074	Callinectes sapidus	Portunidae	658
AY682075	Callinectes sapidus	Portunidae	658
AY682076	Callinectes sapidus	Portunidae	658
AY682077	Callinectes sapidus	Portunidae	658
AY682078	Callinectes sapidus	Portunidae	658
AY682079	Callinectes sapidus	Portunidae	658
AY616445	Carcinus aestuarii	Portunidae	498
AY616437	Carcinus maenas	Portunidae	498
AY616438	Carcinus maenas	Portunidae	498
AY616439	Carcinus maenas	Portunidae	498
AY616440	Carcinus maenas	Portunidae	498
AY616441	Carcinus maenas	Portunidae	498
AY616442	Carcinus maenas	Portunidae	498
AY616443	Carcinus maenas	Portunidae	498
AY616444	Carcinus maenas	Portunidae	498
AF493625	Cherax crassimanus	Parastacidae	600
NC 011243	Cherax destructor	Parastacidae	658
ΔF493622	Cherax preissii	Parastacidae	600
ΔF493623	Cherax preissii	Parastacidae	600
ΔF493618	Cherax quinquecaringtus	Parastacidae	600
ΔF493619	Cherax quinquecarinatus	Parastacidae	600
AF493620	Cherax quinquecarinatus	Parastacidae	600
A E403621	Cherax quinquecarinatus	Parastacidae	600
AF493021	Cherax quinquecarinatus	Parastacidae	600
AF493020	Cherax tenuimanus	Parastacidae	600
AF493027	Cherax tenuimanus	Parastacidae	600
AF493028	Cherax tenuimanus	Parastacidae	600
AF493029	Cherax tenuimanus	Parastacidae	600
AF493030 AF402621	Cherax tenuimanus	Parastacidae	600
AF493031	Cherax lenuimanus	Parastacidae	600
AF493033	Engueus strictijrons	Varunidaa	600
AF105250	Eriocheir formosa	Varunidae	038
AF103230	Eriocheir formosa Eriocheir formosa	Varunidae	038
AF310098	Eriocheir formosa	Varunidae	558
AF51/520	Eriocneir formosa	Varunidae	576
AF310099	Eriocheir nepuensis	varunidae	558
AF31/32/	Eriocheir hepuensis	Varunidae	576
AF317328	Eriocheir hepuensis	Varunidae	576
AF105245	Eriocheir japonica	Varunidae	658
AF105246	Eriocheir japonica	Varunidae	658
AF516700	Eriocheir japonica	Varunidae	558
AF317330	Eriocheir japonica	Varunidae	576
AF317331	Eriocheir japonica	Varunidae	576
AF516701	Eriocheir leptognathus	Varunidae	558

Eriocheir leptognathus

Eriocheir rectus

Eriocheir sinensis

Varunidae

Varunidae

Varunidae

Table A4. List of decapod specimens for which COI barcodes were acquired from GenBank, together with their family and sequence length.

576

576

658

 Table A4 (continued).

GenBank accession No.	Species	Family	Length
AF105248	Eriocheir sinensis	Varunidae	658
AF435113	Eriocheir sinensis	Varunidae	588
AF435114	Eriocheir sinensis	Varunidae	588
AF435115	Eriocheir sinensis	Varunidae	588
AF435116	Eriocheir sinensis	Varunidae	588
AF435117	Eriocheir sinensis	Varunidae	588
AF435118	Eriocheir sinensis	Varunidae	588
AF435119	Eriocheir sinensis	Varunidae	588
AF516702	Eriocheir sinensis	Varunidae	558
AF317333	Eriocheir sinensis	Varunidae	576
AF317335	Eriocheir sinensis	Varunidae	576
AF317336	Eriocheir sinensis	Varunidae	576
AF493634	Euastacus bispinosus	Parastacidae	600
AF516703	Gaetice depressus	Varunidae	555
AF317339	Gaetice depressus	Varunidae	573
AF493632	Geocharax falcata	Parastacidae	600
AF317340	Hemigrapsus sanguineus	Varunidae	573
AF192875	Jasus edwardsii	Palinuridae	513
AF192877	Jasus edwardsii	Palinuridae	507
AF339473	Jasus edwardsii	Palinuridae	642
AF192882	Jasus lalandii	Palinuridae	513
AF192883	Jasus verreauxi	Palinuridae	518
AF399976	Liberonautes latidactylus	Potamonautidae	540
AF510695	Macrobrachium australiense	Palaemonidae	608
AF510696	Macrobrachium australiense	Palaemonidae	609
AF510697	Macrobrachium australiense	Palaemonidae	609
AF510699	Macrobrachium australiense	Palaemonidae	609
AF510702	Macrobrachium australiense	Palaemonidae	609
AF510704	Macrobrachium australiense	Palaemonidae	606
AF510705	Macrobrachium australiense	Palaemonidae	609
AF510706	Macrobrachium australiense	Palaemonidae	608
AF510708	Macrobrachium australiense	Palaemonidae	608
AF510709	Macrobrachium australiense	Palaemonidae	609
AF283885	Munida rhodonia	Galatheidae	657
AF283886	Munida rhodonia	Galatheidae	639
AF283887	Munida rubrodigitalis	Galatheidae	657
AF483156	Pagurus acadianus	Paguridae	525
AF483159	Pagurus armatus	Paguridae	521
AF483157	Pagurus bernhardus	Paguridae	525
AF483118	Pagurus longicarpus	Paguridae	642
AF483122	Pagurus longicarpus	Paguridae	642
AF483124	Pagurus longicarpus	Paguridae	642
AF483127	Pagurus longicarpus	Paguridae	642
AF483140	Pagurus longicarpus	Paguridae	642
AF483142	Pagurus longicarpus	Paguridae	642
AF483143	Pagurus longicarpus	Paguridae	642
AF483144	Pagurus longicarpus	Paguridae	642
AF483151	Pagurus longicarpus	Paguridae	642
AF483153	Pagurus longicarpus	Paguridae	642
AF483158	Pagurus ochotensis	Paguridae	525
AF483160	Pagurus pollicaris	Paguridae	525
AF483161	Pagurus pollicaris	Paguridae	525
AF483163	Pagurus pollicaris	Paguridae	525
AF483164	Pagurus pollicaris	Paguridae	525
AF483165	Pagurus pollicaris	Paguridae	525
AF483166	Pagurus pollicaris	Paguridae	525
AF483167	Pagurus pollicaris	Paguridae	525
AF483169	Pagurus pollicaris	Paguridae	525

Costa et al.

 Table A4 (concluded).

GenBank accession No.	Species	Family	Length
AF483170	Pagurus pollicaris	Paguridae	525
AF483171	Pagurus pollicaris	Paguridae	525
AJ640116	Palaemon longirostris	Palaemonidae	658
AF339452	Panulirus argus	Palinuridae	642
AF339453	Panulirus cygnus	Palinuridae	642
AF339454	Panulirus echinatus	Palinuridae	642
AF339456	Panulirus guttatus	Palinuridae	642
AF339457	Panulirus homarus homarus	Palinuridae	642
AF339458	Panulirus homarus megasculpta	Palinuridae	642
AF339459	Panulirus inflatus	Palinuridae	642
AF339461	Panulirus japonicus	Palinuridae	641
AB071201	Panulirus japonicus	Palinuridae	658
AF339462	Panulirus laevicauda	Palinuridae	642
AF339463	Panulirus longipes femoristriga	Palinuridae	642
AF339464	Panulirus longipes longipes	Palinuridae	642
AF339465	Panulirus marginatus	Palinuridae	641
AF339467	Panulirus ornatus	Palinuridae	636
AF339466	Panulirus pascuensis	Palinuridae	642
AF339468	Panulirus penicillatus	Palinuridae	642
AF339469	Panulirus polyphagus	Palinuridae	642
AF339470	Panulirus regius	Palinuridae	642
AF339471	Panulirus stimpsoni	Palinuridae	642
AF339472	Panulirus versicolor	Palinuridae	642
AF534894	Paratya australiensis	Atyidae	633
AF534898	Paratya australiensis	Atyidae	633
AF534901	Paratya australiensis	Atyidae	633
AF534902	Paratya australiensis	Atyidae	633
AY308079	Paratya australiensis	Atyidae	561
AY308080	Paratya australiensis	Atyidae	561
AY308085	Paratya australiensis	Atyidae	561
AY308086	Paratya australiensis	Atyidae	561
AY308101	Paratya australiensis	Atyidae	561
AY308104	Paratya australiensis	Atyidae	561
NC_002184	Penaeus monodon	Penaeidae	658
NC_005037	Portunus trituberculatus	Portunidae	658
AF399979	Potamonautes lividus	Potamonautidae	538
AF474366	Procambarus acutus	Cambaridae	658
AF346400	Ranina ranina	Raninidae	642
AF283869	Raymunida cagnetei	Galatheidae	657
AF283870	Raymunida cagnetei	Galatheidae	657
AF283871	Raymunida cagnetei	Galatheidae	657
AF283872	Raymunida confundens	Galatheidae	657
AF283873	Raymunida confundens	Galatheidae	657
AF283874	Raymunida dextralis	Galatheidae	657
AF283875	Raymunida elegantissima	Galatheidae	657
AF283876	Raymunida elegantissima	Galatheidae	657
AF283877	Raymunida elegantissima	Galatheidae	657
AF283878	Raymunida elegantissima	Galatheidae	657
AF283879	Raymunida elegantissima	Galatheidae	657
AF283880	Raymunida elegantissima	Galatheidae	657
AF283881	Raymunida elegantissima	Galatheidae	656
AF283882	Raymunida erythrina	Galatheidae	657
AF283883	Raymunida erythrina	Galatheidae	657
AY288292	Raymunida formosanus	Galatheidae	654
AF283884	Raymunida insulata	Galatheidae	657
AF399974	Sudanonautes africanus	Potamonautidae	528
AF516704	Varuna litterata	Varunidae	558
AF317343	Varuna litterata	Varunidae	573

Table A5. List of specimens of the genus *Gammarus* (Amphipoda) used for calculation of within- and among-species distances displayed in Table 1.

Process ID	Species	Country
FCGA011-04	Gammarus aequicauda	Italy
FCGA012-04	Gammarus aequicauda	Italy
FCGA041-04	Gammarus chevreuxi	Portugal
FCGA042-04	Gammarus chevreuxi	Portugal
FCGA043-04	Gammarus chevreuxi	Portugal
FCGA044-04	Gammarus chevreuxi	Portugal
FCGA027-04	Gammarus crinicornis	Belgium
FCGA029-04	Gammarus crinicornis	Belgium
FCGA045-04	Gammarus crinicornis	Portugal
FCGA054-04	Gammarus duebeni	Iceland
FCGA059-04	Gammarus duebeni	Iceland
FCGA072-05	Gammarus duebeni	Iceland
FCGA073-05	Gammarus duebeni	Iceland
FCGA074-05	Gammarus duebeni	Iceland
FCGA034-04	Gammarus insensibilis	Portugal
FCGA035-04	Gammarus insensibilis	Portugal
FCGA036-04	Gammarus insensibilis	Portugal
FCGA033-04	Gammarus insensibilis	Portugal
FCGA028-04	Gammarus locusta	Belgium
FCGA030-04	Gammarus locusta	Belgium
FCGA031-04	Gammarus locusta	Belgium
FCGA032-04	Gammarus locusta	Belgium
FCGA001-04	Gammarus locusta	Portugal
FCGA037-04	Gammarus locusta	Portugal
FCGA038-04	Gammarus locusta	Portugal
FCGA039-04	Gammarus locusta	Portugal
FCGA040-04	Gammarus locusta	Portugal
FCGA048-04	Gammarus oceanicus	Iceland
FCGA049-04	Gammarus oceanicus	Iceland
FCGA050-04	Gammarus oceanicus	Iceland
FCGA051-04	Gammarus oceanicus	Iceland
FCGA067-05	Gammarus oceanicus	Iceland
FCGA068-05	Gammarus oceanicus	Iceland
FCGA070-05	Gammarus oceanicus	Iceland
FCGA071-05	Gammarus oceanicus	Iceland
FCGA016-04	Gammarus oceanicus	Poland
FCGA017-04	Gammarus oceanicus	Poland
FCGA018-04	Gammarus oceanicus	Poland
FCGA019-04	Gammarus oceanicus	Poland
FCGA056-04	Gammarus oceanicus	Canada Churchill
FCGA047-04	Gammarus oceanicus	Canada, Churchill
FCGA062-05	Gammarus oceanicus	Canada Churchill
FCGA063-05	Gammarus oceanicus	Canada Churchill
FCGA023-04	Gammarus oceanicus	Canada, Citurenini Canada Rimouski
FCGA025-04	Gammarus oceanicus	Canada Rimouski
FCGA026-04	Gammarus oceanicus	Canada, Rimouski
FCGA002-04	Gammarus PS 1	Bulgaria
FCGA002-04	Gammarus PS 1	Bulgaria
FCGA003-04	Gammarus PS 1	Bulgaria
FCGA005-04	Gammarus PS 1	Bulgaria
FCGA006 04	Cammarus DC 1	Bulgaria
ECGA007 04	Cammanus PS 2	Bulgaria
FCGA002-04	Gammarus PS 2	Bulgaria
ECGA000-04	Cammanus PS 2	Bulgaria
ECCA010 04	Cammanus PS 2	Dulgaria
1°CUA010-04	Jummurus r3 2	Dulgalla

Table AS (concluded).	Table	A5	(concluded).
-----------------------	-------	----	--------------

Process ID	Species	Country
FCGA013-04	Gammarus salinus	Poland
FCGA014-04	Gammarus salinus	Poland
FCGA015-04	Gammarus salinus	Poland
FCGA076-05	Gammarus salinus	Poland
FCGA077-05	Gammarus salinus	Poland
FCGA078-05	Gammarus salinus	Poland
FCGA079-05	Gammarus salinus	Poland
FCGA080-05	Gammarus salinus	Poland
FCGA081-05	Gammarus tigrinus	Poland
FCGA082-05	Gammarus tigrinus	Poland
FCGA083-05	Gammarus tigrinus	Poland
FCGA084-05	Gammarus tigrinus	Poland
FCGA020-04	Gammarus zaddachi	Poland
FCGA021-04	Gammarus zaddachi	Poland

Note: Data from F.O. Costa and P.D.N. Hebert, unpublished data. PS, provisional species.

Table A6. List of specimens of the genus *Daphnia* (Cladocera) used for calculation of within- and among-species distances displayed in Table 1.

GenBank accession No.	Species	Length
AY323083	Daphnia dadayana	630
AY323084	Daphnia dadayana	630
AY323085	Daphnia dadayana	630
AY323086	Daphnia dadayana	630
AY323087	Daphnia dadayana	630
AY323088	Daphnia dadayana	630
AY323089	Daphnia dadayana	630
AY323090	Daphnia dadayana	630
AY323091	Daphnia dadayana	630
AY323092	Daphnia dadayana	630
AY323093	Daphnia dadayana	630
AY323094	Daphnia dadayana	629
AY323095	Daphnia dadayana	619
AY323096	Daphnia dadayana	630
AY323097	Daphnia dadayana	630
AY323098	Daphnia dadayana	630
AY323071	Daphnia gessneri	630
AY323072	Daphnia laevis	630
AY323073	Daphnia laevis	630
AY323074	Daphnia menucoensis	630
AY323075	Daphnia menucoensis	630
AY323076	Daphnia menucoensis	630
AY323077	Daphnia menucoensis	629
AY323078	Daphnia menucoensis	630
AY323079	Daphnia menucoensis	630
AY323080	Daphnia menucoensis	630
AY323081	Daphnia menucoensis	630
AY323082	Daphnia menucoensis	630
AY323123	Daphnia ornithocephala	629
AY323124	Daphnia ornithocephala	629
AY323125	Daphnia ornithocephala	629
AY323126	Daphnia parvula	630
AY 323070	Daphnia peruviana	630
AF308971	Daphnia similis	645
AY323121	Daphnia similis	630
AY 323048	Daphnia sp. 1 SA-2003	630
AY 323049	Daphnia sp. 1 SA-2003	630
AY 323050	<i>Daphnia</i> sp. 1 SA-2003	630
AY 323051	<i>Daphnia</i> sp. 1 SA-2003	628
AY 323052	Daphnia sp. 1 SA-2003	630
AY 323053	Daphnia sp. 1 SA-2003	630
AY 323054	Daphnia sp. 1 SA-2003	630
AY 323055	Daphnia sp. 1 SA-2003	630
A1 525050 AV 222057	Daphnia sp. 1 SA-2003	620
AT 525057 AV 222059	Daphnia sp. 1 SA-2003	620
A1 525058	Daphnia sp. 1 SA-2003	620
A1 323039 AV222060	Daphnia sp. 2 SA-2003	620
AV323061	Daphnia sp. 2 SA-2003	630
AV323062	Daphnia sp. 2 SA-2003	630
ΔΥ323063	Daphnia sp. 2 SA-2005 Daphnia sp. 2 SA 2002	630
ΔΥ323064	Daphnia sp. 2 $SA=2003$	630
AY323065	Daphnia sp. 2 SA-2003	630
AY323066	Daphnia sp. $3 SA-2003$	629
AY323067	Daphnia sp. $3 SA-2003$	630
111 323007	Dupinnu sp. 5 5A-2005	0.50

 Table A6 (concluded).

GenBank accession No.	Species	Length
AY323068	Daphnia sp. 3 SA-2003	630
AY323069	Daphnia sp. 3 SA-2003	630
AY323122	Daphnia sp. 4 SA-2003	628
AY323099	Daphnia spinulata	630
AY323100	Daphnia spinulata	630
AY323101	Daphnia spinulata	630
AY323102	Daphnia spinulata	630
AY323103	Daphnia spinulata	630
AY323104	Daphnia spinulata	630
AY323105	Daphnia spinulata	630
AY323106	Daphnia spinulata	630
AY323107	Daphnia spinulata	630
AY323108	Daphnia spinulata	630
AY323109	Daphnia spinulata	630
AY323110	Daphnia spinulata	630
AY323111	Daphnia spinulata	630
AY323112	Daphnia spinulata	630
AY323113	Daphnia spinulata	630
AY323114	Daphnia spinulata	628
AY323115	Daphnia spinulata	630
AY323116	Daphnia spinulata	630
AY323117	Daphnia spinulata	630
AY323118	Daphnia spinulata	630
AY323119	Daphnia spinulata	630
AY323120	Daphnia spinulata	630

Note: Data adapted from Adamowicz et al. (2004).