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The population genetic structure of the salmon louse
(Lepeophtheirus salmonis: Caligidae) is of considerable
interest because of indirect evidence suggesting
transmission of this ectoparasite between wild
salmon and farmed salmon (reviewed by Boxaspen
2006). Consequently several studies have looked for
farm-specific molecular markers that would allow
the path of transmission to and from wild fish to
be traced. Unfortunately, an early report of RAPD
markers that were specific to Scottish salmon
farms (Todd, Walker, Wolff, Northcott, Walker, Ritchie,
Hoskins, Abbott & Hazon 1997) was not found in a
second RAPD study (Dixon, Shinn & Sommerville
2004) or in a more extensive study using six micro-
satellite markers (Todd, Walker, Ritchie, Graves &
Walker 2004). Nevertheless, interest in finding farm-
specific molecular markers continues. It is still not
possible to follow the salmon lice larvae during the
4-14-day period they spend in the plankton before
they infect a host (Johnson & Albright 1991). We
therefore tested the research hypothesis that popula-
tion genetic structure existed among salmon lice
populations collected from different geographical
regions of British Columbia, Canada, because of
restricted gene flow.

Samples of the salmon louse, L. salmonis, were
obtained from three different wild Pacific salmon
species by sports fishing and during creel (sports
fishery catch) surveys and from farmed Atlantic
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salmon by netting (Table 1). Sea lice were removed
from each salmon host with forceps and preserved
in 95% ethanol. To test for population genetic struc-
ture with the largest sample size possible, we decided
to use a fragment of the mitochondrial cytochrome
¢ oxidase subunit 1 (COI) (Folmer, Black, Hoeh, Lutz
& Vrijenhoek 1994) that has been extensively used for
DNA barcoding (Hebert, Cywinska, Ball & deWaard
2003). This allowed us to make use of a large number
of existing salmon louse COI sequences and to easily
compare the sequence divergence that we observed
among different clades with that of other species of
animals (Hebert et al. 2003).

Template DNA was extracted from individual
salmon lice using modified proteinase K methods.
A 1mm> piece of ethanol-preserved tissue was
obtained from each specimen and placed directly into
96-well plates containing lysis buffer and proteinase
K. Subsequent DNA extraction used a glass fibre pro-
tocol (Ivanova, deWaard & Hebert 2006). A 710-bp
fragment of the COI gene was polymerase chain reac-
tion (PCR) amplified using the primer pairs LCO1490
and HCO2198 (Folmer et al. 1994) or LepF1 and LepR1
(Hebert, Penton, Burns, Janzen & Hallwachs 2004)
and visualized in a 96-well E-Gel (Invitrogen Canada,
Burlington, ON, Canada). The PCR mix included
6.25 uL of 10% trehalose, 1.25 uL. 10 x PCR buffer,
0.625 pLL (50 mM) MgCl,, 0125 pL (10 pm) of each pri-
mer, 00625 pL. (10 mM) dNTPs, 0.0625 pL. Platinum
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Figure 1 Pie diagrams of mtDNA haplotype frequencies in two farmed populations and two wild populations of salmon
from British Columbia that had the largest sample sizes (Appendices S1 and S2).

Taq polymerase (Invitrogen), 2 pL of H,O and 2 pL of
template DNA for a total volume of ~12.5 pL. Poly-
merase chain reactions were run under the following
thermal cycle conditions: 2 min at 94 °C followed by,
35 cycles of 40s at 94 °C, 40 s at 54 °C and 1 min at
72 °C, and finally 10 min at 72 °C. Polymerase chain
reaction products producing single clear amplicons
were sequenced (following deWaard, Ivanova,
Hajibabaei & Hebert 2008) in both directions using
the PCR primers and BIGDYE version 3.1 on an
ABI PRISM 3730 capillary sequencer (Applied Biosys-
tems, Mississauga, ON, Canada). DNA sequences (see
Table 1 for GenBank accession numbers) and photo-
graphs of all the salmon louse specimens have been
deposited in the Barcode of Life Database (BOLD;
http://www.barcodinglife.org).

For the population genetic structure analysis, all
full-length sequences without any ambiguous sites
were aligned manually using MEGa 4.0 (Tamura, Dud-
ley, Nei & Kumar 2007) and truncated to the same
length of 581 base pairs. We then exported only the
parsimony informative sites to a new data file using
MEGA. This removed the singleton haplotypes from
our dataset, which increased our statistical power to
detect population structure with the sample sizes
that were available. We then used Tcs 1.21 (Clement,
Posada & Crandall 2000) to construct a haplotype

© 2009 The Authors

network. To estimate spatial population structure,
we performed exact tests of population differentia-
tion, which is powerful when the sample sizes
are small relative to the number of alleles (Raymond
& Rousset 1995) using ARLEQUIN 3.01 (Excoffier,
Laval & Schneider 2005).

A total 0f194 COI sequences in the combined data-
set between our 175 new samples and 19 previously
published from Vancouver Island (Yazawa, Yasuike,
Leong, von Schalburg, Cooper, Beetz-Sargent, Robb,
Davidson, Jones & Koop 2008) were included in our
population structure analysis. The dataset contained
29 variable sites that were present in at least two
salmon lice and comprised 45 haplotypes (support-
ing information, Appendices S1-S3). Haplotype 1
was the most common and made up between 30 and
56% of the lice from four host populations that
we had the largest samples from (Fig. 1). Haplotype 2
was the second most common and the network ana-
lysis with Tcs suggests that it is likely ancestral to all
other haplotypes (Fig. 2).

To our surprise, we observed considerable popula-
tion structure not only between lice from wild sal-
mon hosts caught on the east and west coasts of
Vancouver Island (Barkley Sound Wild versus
Broughton Wild) but also between lice from wild and
farmed salmon hosts within a region (Broughton

Journal Compilation © 2009 Blackwell Publishing Ltd, Aquaculture Research, 40, 973-979 975
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in this study as estimated by the program Tcs. The size of the polygon represents the relative abundance of a particular
haplotype. The rectangle refers to a haplotype (#2) that is likely ancestral to the others (Appendix S2). Nodes for inter-
mediate haplotypes that were not observed in our sample are shown with a dot. Numbers along the branches refer to the
number of the base pair where the substitution between the two haplotypes took place. Those with an asterix had more
than two different kinds of nucleotides that were substituted.

Table 2 Above diagonal: Fy values between pairs of four large host populations of Lepeophtheirus salmonis calculated using

conventional F statistics. Below diagonal: probability values from exact test of sample differentiation based on haplotype

frequencies (Raymond & Rousset 1995)

Campbell

Barkley Sound Wild Broughton Wild Broughton Farmed R.Farmed
Barkley Sound Wild 0.13™* 0.21™** 0.24™*
Broughton Wild 0.00000 + 0.0000 0.19** 0.22**
Broughton Farmed 0.00000 + 0.0000 0.00000 + 0.0000 0.29**

Campbell R. Farmed 0.00000 + 0.0000

0.00000 + 0.0000

0.00000 + 0.0000

**All Fy values were very highly significant even after a Bonferroni correction.

Wild versus Broughton Farmed; Table 2). This later
result suggests that migration between the Brought-
on farmed and Broughton wild populations was low
enough to allow the two populations to maintain dif-

976

ferent haplotype frequencies. Table 2 shows that the
probability of observing this distribution of haplo-
types under the null hypothesis of panmixia, given
those predicted by the marginal values in the table,

© 2009 The Authors
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is <0.00001. We believe that our detection of signifi-
cant population structure with moderately small
sample sizes is the result of using an exact test meth-
od of analysis of only the parsimony informative
sites. We used this method to analyse the same 658
base pair ‘BIO barcoding’ portion (Folmer et al. 1994)
of the salmon louse COI sequences first published by
Tjensvoll, Glover and Nylund (2006) and we detected
significant population structure between all pairs of
their six Atlantic Ocean sites. Unlike their previous
AMOVA analysis where they found ‘little evidence to
suggest that L. salmonis is divided into discrete popu-
lations. . . [except for a] weak degree of sub-division
Canada and the Northeast Atlantic ...’ our techni-
que detected significant pairwise population struc-
ture between the salmon louse L. salmonis collected
from Atlantic salmon (Salmo salar) from three Norwe-
gian salmon farms (Appendix S4).

Analysis of 185 of our new COI sequences from
British Columbia, combined with all previously pub-
lished COI sequences for L. salmonis, using the
Kimura two-parameter distance method (Kimura
1980) and the neighbour-joining tree-building algo-
rithm implemented on BOLD shows two different
clades (Fig. 3; Appendix S5) with considerable se-
quence divergence (4.8—7.7%) between samples col-
lected from the Pacific and samples collected from
the Atlantic. This is more than the 3% sequence
divergence for this COI fragment that is typical
among sibling species of animals (Hebert et al. 2003).
Our larger dataset confirms previous estimates of
divergence between the Pacific and Atlantic L. salmo-
nis based on COI sequences from 63 salmon louse
sampled from sites throughout the northern Pacific
Ocean as well as the pattern of divergence shown for
another mitochondrial gene (16S) and for nuclear
EST sequence data (Yazawa et al. 2008). These com-
bined results strongly suggest that L. salmonis from
the Pacific coast should be described as a new species
once detailed morphological work can be performed.
We also compared our sequences with COI sequences
published for the genus Caligus (Qines & Heuch
2005) and confirmed that none of our sequences
were from that genus.

We have shown that it is feasible to use a highly
repeatable molecular marker and high-throughput
‘barcoding’ methods (deWaard et al. 2008) to detect
population genetic structure in the salmon louse.
The presence of population structure among salmon
louse from different regions of British Columbia
supports our hypothesis that gene flow is restricted
during the salmon louse larva’s 4—14-day planktonic

© 2009 The Authors
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Figure 3 A neighbour-joining tree (Kimura two-para-
meter distance) of cytochrome ¢ oxidase subunit 1 haplo-
types from samples of the salmon louse, Lepeophtheirus
salmonis (Kroyer), from the Northern Pacific and North-
ern Atlantic oceans (see Appendix S5 for larger version of
tree with full population labels).

period. However, we would like to caution our read-
ers that our current study contains too few lice
sampled from too few hosts to make conclusive state-
ments about the frequency of transmission of lice
from wild fish to farm fish. We observed significant
differences in haplotype frequencies between the

Journal Compilation © 2009 Blackwell Publishing Ltd, Aquaculture Research, 40, 973-979 977
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Broughton Archipelago farm fish and the Broughton
Archipelago wild fish, which could be caused by a se-
vere genetic bottleneck when lice from a small num-
ber of parents are transmitted between the farm fish
and the wild fish. However, an alternative explana-
tion is that the differences are the result of temporal
variation in haplotype frequencies — the wild samples
were collected in 2005 and the farm samples were
collected in 2006. Temporal variation in haplotype
frequencies can result from the sweepstakes repro-
ductive success common in marine organisms with
planktonic larval stages, whereby the next genera-
tion can be produced by a very few individuals
(Hedgecock 1994) who are likely to be related because
of spatial aggregation of relatives during settlement
(Lee & Boulding 2007). Our preliminary results sug-
gest that transmission of lice between the two popu-
lations is complex but could be better understood by
collecting very large samples of adult salmon lice
from both farm fish and wild fish over a period of sev-
eral years. We recommend that several salmon lice
from each host fish be preserved and genotyped for
the ‘BIO barcoding’ COI fragment. This will enable
the patterns of genetic variation within a host fish to
be separated from those among host fish.
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Supporting Information

Additional Supporting Information may be found in
the online version of this article:

Appendix S1. Abundances of 45 different COI haplo-
types of the salmon louse sampled from nine different
geographical locations (Table 1). Populations with ay
suffix (Online Appendix 3).

Appendix S2. Sequence of COI haplotypes of the 45
haplotypes used in our population structure analy-
sis. The haplotype number and sequence at bottom
of a group applies to all of the sample IDs just above it.
Appendix S3. Correspondence between BIO Process
IDs and GenBank accession numbers and names for
20 salmon lice samples from Vancouver Island, British
Columbia from Yazawa et al. (2008). EU288204.1 was
not used in the TCS haplotype network analysis be-
cause it has such a high sequence divergence that we
suspect that it may be a different taxon.

Appendix S4. Exact Test of Sample Differentiation
Based on Haplotype Frequencies using Parsimony
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informative sites within 658 bp “BIO barcoding” por-
tion of COI sequences published by Tjensvoll et al. 2006
Appendix S5. A neighbour-joining tree (Kimura
two parameter distance) of COI haplotypes labelled
with the collection locations of individual salmon
louse, Lepeophtheirus salmonis (Kroyer). The DNA
sequence from each salmon louse is indicated by a
BOLD Processing Sample Labels with their GenBank
accession number following the vertical line. Sample
labels beginning with SLOBC are new sequences
from the current study (Table 1). The 54 samples
prefixed with GGBSL are from throughout the
Pacific Ocean (for map see Figure 1 in Yazawa et al
2008) comprise: EU288201-EU288216, EU288244-
EU288246, EU288250-EU 288251 from British Columbia,
Canada (N = 20, see Online Appendix 3); EU288218-
EU288230 Bering Sea (N = 9); EU288231-EU288243,
EU288247-EU288249 Alaska, United States (N = 13);
EU288252-EU288263 Hokkaido, Japan (N =12). The
180 Samples prefixed with GGBCX are from the
Atlantic Ocean (Tjensvoll et al., 2006) and comprise:
AY602587-AY602616 from Finmark, Norway
(N = 30); AY602617-AY602646 from Sogn og Fjor-
dane, Norway (N = 30); AY602647-AY 602676 from
Ost-Agder, Norway (N = 30); AY602677-AY 602706
from the Isle of Skye, Scotland (N = 30); AY602707-
AY 602736 are from the Republic of Komi, Russia
(N=30), and AY602737-AY602766 from New
Brunswick, Canada (N = 30).

Please note: Wiley-Blackwell are not responsible for
the content or functionality of any supporting mate-
rials supplied by the authors. Any queries (other than
missing material) should be directed to the corre-
sponding author for the article.
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