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Abstract

Monitoring changes in terrestrial arthropod communities over space and time requires a
dramatic increase in the speed and accuracy of processing samples that cannot be achieved
with morphological approaches. The combination of DNA barcoding and Malaise traps
allows expedited, comprehensive inventories of species abundance whose cost will rapidly
decline as high-throughput sequencing technologies advance. Aside from detailing
protocols from specimen sorting to data release, this paper describes their use in a survey
of arthropod diversity in a national park that examined 21,194 specimens representing 2,255
species. These protocols can support arthropod monitoring programs at regional, national,

and continental scales.

Keywords: malaise trap, DNA barcoding, biological inventory, biomonitoring, barcode

index numbers
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Introduction

Given unprecedented losses (Lawton and May 1995; Pimm et al. 1995, 2014), improved methods
to quantify biodiversity at a massive scale and at low cost are essential, especially for small-bodied
organisms such as arthropods. The melding of two technologies — DNA barcoding and passive,
large-scale specimen collection — represents a potential solution. DNA barcoding simplifies and
accelerates taxonomic identifications (Hebert et al. 2003; Packer et al. 2009; Cristescu 2014; Joly et
al. 2014) by employing the 6.12 million reference sequences (July 2018) in the Barcode of Life
Datasystems (BOLD; Ratnasingham and Hebert 2007). Coverage of the BOLD reference library
varies for geographic regions and taxonomic groups, ranging from nearly complete for some
continental faunas, e.g. beetles, spiders, moths and butterflies, (Hebert et al. 2013; Pentinsaari et
al. 2014; Hendrich et al. 2014; Huemer et al. 2014; Rougerie et al. 2014; Zahiri et al. 2017; Blagoev
et al. 2015; Gwiazdowski et al. 2015) to sparse for many taxa, e.g. nematodes, mites and molluscs
(Ferri et al. 2009; Young et al. 2012; Layton et al. 2014). Because the latter groups include many
undescribed species, operational taxonomic units (OTUs) must be employed to quantify their
diversity. DNA barcoding represents a dramatic advance for such analysis because the Barcode
Index Number (BIN) system (Ratnasingham and Hebert 2013) provides an objective approach for
OTU delineation of animals that is coupled with a persistent registry. Since BINs correspond well
with Linnaean species in many animal groups (Hausmann et al. 2013; Ratnasingham and Hebert
2013; Zahiri et al. 2014; Blagoev et al. 2015), BIN-based biodiversity assessments can be

implemented for groups that lack well-developed taxonomy.

The Malaise trap (Malaise 1937) has gained popularity for assessing terrestrial arthropod
communities (Karlsson et al. 2005) because it collects large samples with little effort (Marshall et al.
1994). However, the subsequent identification is a substantial challenge as a week-long collection
often includes more than 1000 specimens representing several hundred species. Moreover,
because many species are only represented by a few specimens, it is important to identify every

individual. Conversely, very common species can consume considerable effort, particularly if they
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belong to a closely allied group of taxa whose members are difficult to discriminate morphologically.
DNA barcoding breaks this taxonomic barrier as it can rapidly assign individuals to OTUs,

streamlining the identification process.

While the analysis of bulk samples through DNA metabarcoding (Hajibabaei et al. 2011; Taberlet et
al. 2012; Yu et al. 2012; Ji et al. 2013; Gibson et al. 2014; Leray and Knowlton 2015) greatly reduces
analytical costs, it has two limitations. It cannot maintain the link between each specimen and its
cytochrome c oxidase subunit | (COI) sequence, which inhibits extending the DNA barcode reference

library, and cannot determine species abundances.

This study describes a protocol for rapid biodiversity assessments which employs DNA barcoding
and passive specimen trapping. Its effectiveness is demonstrated by describing a survey that
examined more than 20,000 specimens representing over 2200 BINs from Point Pelee National
Park. This protocol has already proven both efficient and effective in several studies (Bukowski et
al. 2015; D’'Souza et al. 2015; Kohn et al. 2015; Mazumdar et al. 2015; Perez et al. 2015; Zlotnick et
al. 2015; Aagaard et al. 2017; Geiger et al. 2016; Hebert et al. 2016; Wirta et al. 2016; Steinke et al.

2017; Ashfaq et al. 2018; D'Souza and Hebert 2018) but is described in detail here for the first time.

Materials and Methods

Specimen Collection and Processing

A Townes-style Malaise trap was deployed for 20 weeks in a cedar-savannah habitat at Point Pelee
National Park in southwestern Ontario, from May 2 until September 19, 2012. Each sample was
collected in a 500 mL plastic Nalgene bottle that was filled with 375 mL of 95% ethanol and then
attached to the trap head (Fig. 1 F2). The catch was harvested weekly and placed in 500 mL of fresh
ethanol before storage at -20°C until it was analyzed at the Centre for Biodiversity Genomics (CBG;

www.biodiversitygenomics.net).

https://mc06.manuscriptcentral.com/genome-pubs
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Each weekly sample was accessioned and its collection data entered into an Access-based
Collection Information Management System (CIMS; Fig. 1 P1). To reduce cost, samples collected in
odd-numbered weeks (1, 3, 5...) were processed while the others were archived. The first stage in
sample processing involved decanting excess ethanol and pouring the specimens into a sorting dish.
Specimens were then partitioned by size (small, medium and large) and assigned to a taxonomic
order. Most large specimens (>5mm) were pinned, with the exception of those taxa routinely stored
in ethanol (e.g., Araneae, Gastropoda); all small and medium specimens were retained in ethanol.
After sorting, specimens were arrayed in batches of 95 plus one control (Fig. 1 P2), mirroring the 8
x 12 format of 96 well microplates. Typically, each array included only one order to avoid mixing of
taxa requiring different primers (Table 1). Specimens of different orders were only combined when
necessary to complete an array. Pinned specimens were placed in Schmitt boxes with an 8 x 12
array grid marked on their foam base, while medium specimens (=3-5mm) were placed in Matrix
storage tubes (Thermo Fisher Scientific; Fig. 1 P2), and small specimens (<3mm) were placed
directly in 96-well microplates (Eppendorf; Fig. 1 P2). The sample was also inspected to determine
if an excessive number (>300 specimens) of a particular morphospecies was present, and if it could
be distinguished morphologically. In these cases, to reduce cost yet still capture the genetic diversity
of those morphospecies, at least 24 specimens, which amounted to two rows in a microplate, were
selected for barcoding while the others were counted and archived. Each container was given a
unique identifier (Root Plate ID, e.g. BIOUGXXXXX) and likewise, each specimen within the
container was given a unique identifier reflecting its position in it (Sample ID, e.g. BIOUGXXXXX-
AO01 to BIOUGXXXXX-H11). The unique identifiers and collection data for each specimen were
uploaded to BOLD (Ratnasingham and Hebert 2007; Fig. 1 P3) with records for each sample placed
in a separate project to allow easier comparison among weeks. Once this was completed and BOLD
Process IDs were generated, labels were printed and affixed to large and medium specimens while
small specimens did not require individual labels (Fig. 1 P4). A small fragment of tissue was then
removed from each large and medium specimen and placed into a microplate destined for DNA

extraction (Fig. 1 P5). Small specimens did not require tissue sampling as they were already in
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microplates. Each microplate was then submitted for molecular processing and its progress through

the analytical chain was tracked with a Laboratory Information Management System (BOLD-LIMS).

DNA Barcode Analysis

Molecular analyses were conducted at the Canadian Centre for DNA Barcoding (CCDB;
www.ccdb.ca). An automated, silica membrane-based DNA extraction protocol (lvanova et al. 2006)
was performed in 96-well microplate format using a 3 um glass fibre over 0.2 um Bio-Inert membrane
filter plate (Pall Corporation). The extraction protocol, however, was modified following Porco et al.
(2010; Fig. 1 P7) to allow recovery of vouchers for microplates containing whole specimens. To
maximize DNA yield, tissue lysis was performed overnight at 56°C before DNA extraction (Fig. 1 S1
and S2). Subsequent PCR amplification of the COI barcode region was performed in 384-well plate
format as this allowed a 50% reduction in reagent volumes from earlier methods (Hajibabaei et al.
2005; deWaard et al. 2008, Wilson 2012). This protocol involved consolidating aliquots of DNA
extracts from four 96-well microplates into a 384-well PCR plate containing PCR master mix using
a Biomek FX workstation (Beckman-Coulter; Fig. 1 S3) and ensured arthropod orders were
processed with the same primer pair. The total PCR reaction volume was 6 pL: 3 uL of 10% D-(+)-
trehalose dihydrate for microbiology (299.0%; Fluka Analytical), 0.92 uL of ultra-pure water (Hyclone,
Thermo Scientific), 0.60 pL of 10x PlatinumTaq buffer (Invitrogen), 0.30 pL of 50 mM
MgCl; (Invitrogen), 0.06 pyL (0.1 uM) of each primer, 0.03 pyL of 10 mM dNTP (KAPA Biosystems),
0.03 pL of 5 U/uL PlatinumTaq DNA Polymerase (Invitrogen), and 1 uL of DNA template. Table 1
details the primer pairs used on the first pass. All PCR reactions employed the same thermocycling
parameters: 94°C for 1 min, 5 cycles at 94°C for 40 sec, 45°C for 40 sec, 72°C for 1 min, followed
by 35 cycles at 94°C for 40 sec, 51°C for 40 sec, 72°C for 1 min, and a final extension at 72°C for 5

min (Fig. 1 S4).

PCR products were diluted 1:4 with molecular grade water and then unidirectionally sequenced

using the appropriate reverse primer (Table 1). Unidirectional sequencing (3' to 5') was also

https://mc06.manuscriptcentral.com/genome-pubs
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completed in 384-well format (Fig. 1 S5) to reduce costs. The total sequencing reaction volume was
5.5 yL: 0.14 pL of BigDye terminator v3.1 (Applied Biosystems), 1.04 pL of 5X sequencing buffer
[400 mM Tris-HCI pH 9.0 + 10 mM MgCl, (Invitrogen)], 2.78 pL of 10% D-(+)-trehalose dihydrate
from Saccharomyces cerevisiae (299%; Sigma-Aldrich), 0.48 uL of ultra-pure water (Hyclone,
Thermo Scientific), 0.56 pL (0.1 uM) of primer; and 0.5 pL of diluted PCR template was added with
a Biomek FX robot. All sequencing reactions employed the same thermocycling protocol: 96°C for 1
min followed by 15 cycles at 96°C for 10 sec, 55°C for 5 sec, 60°C for 1.25 min, followed by 5 cycles
at 96°C for 10 sec, 55°C for 5 sec, 60°C for 1.75 min, then 60°C for 15 sec followed by 15 cycles at
96°C for 10 sec, 55°C for 5 sec, 60°C for 2 min and a final extension at 60°C for 1 min (Fig. 1 S6).
An automated, magnetic bead-based sequencing cleanup method was employed in 384-well
microplates using PureSEQ (ALINE Biosciences) on a separate Biomek FX robot before sequencing

on an ABI 3730xL DNA Analyzer (Applied Biosystems; Fig. 1 S7).

Trace files were manually uploaded to BOLD and were automatically assessed for quality based on
predefined parameters (Ratnasingham and Hebert 2007). Trace files that received medium and
high-quality assessments were automatically trimmed and edited by the BOLD platform. Those
deemed low quality or classified as failed reads were ignored. Trimming was performed using a
sliding window approach, discarding leading and trailing segments of the sequence that had more
than 4 bp with a quality value (QV) score lower than 20 in a window of 20 bp. All sequences with
less than 500 bp in the barcode region (the threshold for BIN assignment; see below) were manually
edited with CodonCode v. 3.0.1 (CodonCode Corporation) to see if additional sequence information
could be recovered (Fig. 1 A1). In cases where multiple trace files were generated for a single

individual (see below) they were manually inspected for chimeras.

The initial PCR failed to generate an amplicon from some DNA extracts, likely reflecting DNA
degradation or low primer affinity. These failures were hitpicked to assemble new destination 96-

well microplates of DNA extracts (Fig. 1 S8), which were subjected to another round of PCR

https://mc06.manuscriptcentral.com/genome-pubs
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employing primers that generated two shorter, overlapping COI (307 bp, 407 bp) amplicons (Table
1; Fig. 1 S9). A Biomek NX Span 8 workstation (Beckman-Coulter) was used to hitpick DNA from
the failed samples into new plates. This ‘failure tracking’ was supported by data generated by the
BOLD-LIMS. The original DNA plates were scanned to identify all specimens that failed to generate
a BIN compliant sequence. The well coordinates of these failures in the source and destination
microplates were generated for input into a Biomek NX robot. The newly configured microplates
were then processed through two PCR reactions followed by bidirectional sequencing and manual
assembly as part of the failure tracking protocol (Fig. 1 S10, S11, S12 and A4). Failure-tracking PCR
reactions were carried out in 96-well microplates. The total PCR reaction volume was 12.5 pL: 6.25
uL of 10% D-(+)-trehalose dihydrate for microbiology (299.0%; Fluka Analytical), 0.125 yL of ultra-
pure water (Hyclone, Thermo Scientific), 2.5 pyL of 5x KAPA Taq HotStart Buffer (KAPA Biosystems),
1.25 pL of 25 mM MgClI; (Invitrogen), 0.125 L of each primer, 0.0625 pyL of 10 mM dNTP (KAPA
Biosystems), 0.0625 pL of 5 U/uL KAPA Taq HotStart DNA Polymerase (KAPA Biosystems), and 2
ML of DNA template. Failure-tracking sequencing reactions were also carried out in 96-well
microplates. PCR products were diluted 1:5 and bidirectionally sequenced. The total sequencing
reaction volume was 11 pL: 0.25 pL of BigDye terminator v3.1 (Applied Biosystems), 1.875 L of 5X
sequencing buffer [400 mM Tris-HCI pH 9.0 + 10 mM MgCl, (Invitrogen)], 5 pL of 10% D-(+)-
trehalose dihydrate from Saccharomyces cerevisiae (299%; Sigma-Aldrich), 0.875 L of ultra-pure

water (Hyclone, Thermo Scientific), 1 uL of primer; and 2 yL of diluted PCR template.

The final step in barcode analysis involved a second round of ‘BIN hitpicking’ to ensure that each
BIN was represented, whenever possible, by five individuals with bidirectional sequence coverage.
BIN information on BOLD was utilized in conjunction with the BOLD-LIMS to select representatives
of each BIN with <5 individuals with bidirectional coverage (Fig. 1 A5) and instructions were
automatically generated for the Biomek NX Span 8 workstation. The hitpicked destination DNA
microplates were then processed through the PCR to bidirectional sequencing steps (Fig. 1 S8 to

S12), manually edited (Fig. 1 A4) and uploaded to BOLD (Fig. 1 A2).

https://mc06.manuscriptcentral.com/genome-pubs
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Data Release and Barcode Index Numbers

Specimen and sequence data are available on BOLD (Fig. 1 A2) in the public dataset DS-PPNP12
entitled "Point Pelee National Park Malaise Trap Program 2012" (http://dx.doi.org/10.5883/DS-
PPNP12). The record for each specimen includes its date and locality of collection, its taxonomic
assignment (see Taxonomic Assignment and Data Analysis), and voucher specimen details. If its
barcode was recovered, the specimen record also includes trace files, quality scores, its sequence,
and corresponding GenBank accession. After final validation, the specimen data were also uploaded
to the Global Biodiversity Information Facility (GBIF) as a Darwin Core Archive (Wieczorek et al.
2012) via the University of Guelph’s Integrated Publishing Toolkit (Robertson et al. 2014) installation
and are available at http://dx.doi.org/10.15468/mbwnw9. A condensed version of the data is

available in Table S13.

The source specimen for each sequence that met quality checks was automatically designated a
BIN by the Refined Single Linkage (RESL) algorithm implemented on BOLD (Ratnasingham and
Hebert 2013; Fig. 1 A3). The requirements for BIN membership are >=500 bp coverage of the
barcode region between positions 70 and 700 of the BOLD alignment (Ratnasingham and Hebert
2013), <1% ambiguous bases, and the absence of a stop codon or contamination flag. Alternatively,
specimens can gain BIN assignment without formal membership if the sequence is 300-500 bp and
unambiguously matches an existing BIN member (i.e. no conflicts among top matches at any
hierarchy level), but will not create or split BINs. RESL runs monthly on all qualifying barcode
sequences (see above) in BOLD which currently totals 6.12 million specimens and 0.56 million BINs
(July 2018). The BIN designations generated through this approach are transparent, reproducible,
and globally accessible through DOI-designated ‘BIN pages’ that collate the specimen and sequence

information of its members (e.g., Danaus plexippus http://dx.doi.org/10.5883/BOLD:AAA9566).

Archiving and Imaging
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All voucher specimens are archived in the natural history collection (institution code = BIOUG) at the
CBG, University of Guelph, where they are available for taxonomic study (Fig. 1 P6). Large pinned
specimens were assigned to an archive location using BIOUG’s CIMS and transferred to a drawer
in the dry collection. Each medium-sized specimen was retained in its storage tube in the Matrix box,
assigned an archive location, and stored in BIOUG'’s fluid collection. Small specimens were returned
from the CCDB after voucher recovery (Porco et al. 2010; Fig. 1 P7), retained in their microplates,
and archived in BIOUG'’s fluid collection. All residual DNA extracts are stored in the DNA Archive at

the CBG (Fig. 1 S13), where they are available for further sequence characterization.

Once sequence analysis was complete and specimens were designated BINs, up to three
representatives of each BIN were photographed to aid taxonomic validation and build a digital image
library (Fig. 1 11) by employing a database query to recognize BINs lacking an image. Specimens
were photographed at high resolution and the images were made accessible through both specimen

and BIN pages under Creative Commons (BY-NC-CA) license.

Taxonomic Assignment and Data Analysis

Following BIN designation, every specimen received a taxonomic assignment based upon querying
BOLD (Fig. 1 A6). If the specimen’s BIN contained other specimens identified to a single family,
genus or species by a taxonomic expert (i.e. denoted by the identifier and/or identification method
field on BOLD), it received this identification. However, if a BIN contained specimens with multiple,
conflicting identifications, the specimens gained the lowest level of taxonomy without discordance.
Specimens assigned to a BIN lacking expert identification were queried through the BOLD

Identification Engine (http://www.boldsystems.org/index.php/IDS_OpenldEngine) If the result was a

close match (<10% divergence for family, <5% for genus, e.g. Coddington et al 2016) and the query
sequence fell within a cluster of BINs assigned to a particular genus or family in the taxon ID tree

(see below), the record was assigned to this taxon. All assignments were further validated using the

10
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taxon ID tree (Fig. S1)% along with matching specimen images (Fig. S2)3. Any anomalies in tree
topology were investigated by retrieving the vouchered specimen and ensuring that all ancillary data
on BOLD were correct (including the specimen image and preliminary identification). If the sequence
was revealed as representing a contamination event, it was flagged, tagged on BOLD as a

contamination, and removed from the analysis and its BIN page.

The final stage of the workflow involved report generation (Fig. 1 A7) aided by the varied functions
on BOLD for calculating summary statistics. As well, supplementary analyses were performed to
demonstrate the utility of the protocol for rapid biodiversity assessment. To explore the completeness
of the inventory, sample- (with each weekly catch considered a sample) and individual-based BIN
accumulation curves were computed using the software product R, version 3.1.1 (R Development
Core Team) and the vegan package (Oksanen et al. 2013). The curves were computed as the mean
of 1000 randomized BIN accumulation curves without replacement. As another measure of
completeness, log-normal abundance plots were calculated using R and the package vegan. These
software programs were also used to estimate total BIN richness for both sample- and individual-
based data using the nonparametric incidence-based species richness estimator Chao 2 (Chao
1987). We summarized the number of specimens and BINs captured for each order and in each
weekly sample, along with relative abundance, the incidence of unique and rare BINs, and the
turnover of BINs among samples and across time. Finally, we compared our DNA barcode-based
inventory to a 40-year (1970 — 2009) morphological inventory from Point Pelee National Park
(Marshall et al. 2009), and combined these two inventories to generate a more comprehensive

checklist for the park.

Results

DNA Barcode Analysis

3 Supplementary data are available with the article through the journal Web site
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All specimens in the ten weekly samples were processed except for three abundant morphospeices,
each from a different sample (week 3: 8,595 specimens of a chironomid; week 5: 313 specimens of
a chironomid; week 9: 334 specimens of a trombidiform mite), which were excluded from the
analysis. In total, 21,194 specimens were processed from the ten samples with first pass analysis
generating successful sequences (i.e. > 0 bp) from 81.6% of them (17,300; Fig. 2). The second pass
analysis recovered another 1885 sequences, bringing the success rate to 90.5% (19,185; Fig. 2).
Aside from these records, 144 sequences were found to be contaminants and another eight
possessed stop codons (Fig. 2). Sequence recovery varied among taxa with Acari displaying the
lowest success (chi-square test, p<0.0001) with just 48.0% of specimens generating a BIN compliant
sequence. There was also evidence of a taxonomic bias (chi-square test, p<0.0001) in the 309
(1.6%) specimens that were either destroyed or unrecoverable after analysis, with most being small,
soft-bodied Hemiptera (104 specimens, 33.7%), Diptera (75 specimens, 24.3%) and Acari (67

specimens, 21.7%).

Specimen and BIN Analyses

Among the specimens that generated a sequence, most (99.4%) received a BIN designation (n =
19,071) (Fig. 2). From these specimens with BINs, 2,043 specimens represented new BINs on BOLD
(at the time of analysis) and were ‘BIN hitpicked’ to acquire a bidirectional sequence and 3,662
specimens were imaged (mean = 1.6 images/BIN).The 114 sequences that failed to meet the criteria
for BIN designation were run through the stand-alone version of the RESL algorithm (using the
function ‘Cluster sequences’ on BOLD) to estimate the number of additional OTUs (or species)
represented; this analysis revealed 65 OTUs. One representative of each OTU was queried against
the BOLD ID Engine: 49 were highly similar (p-distance > 97.8%) and matched to known BINs while

16 appeared to be new to BOLD, as they were less similar to known BINs (p-distance < 97.8%).

All subsequent analyses considered the 19,071 specimens with a BIN designation. They included

taxa belonging to four classes and 25 orders (Fig. 3, Table S2). Diptera were dominant comprising

12
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57.0% of the specimens (Fig. 3a) and 49.7% of the BINs (Fig. 3b). Hymenoptera was also very
diverse with the third highest percentage of specimens (11.3%) and the second highest proportion

of BINs (25.3%).

In total, 2,255 BINs were present in the ten samples with an average of 458 BINs and 1,907
specimens per sample (BIN range = 253-640, specimen range: 814-3,795) (Fig. 4, Table S3). Most
BINs were uncommon; 47.6% (1,074) were represented by a single specimen while only 36 (1.6%)
had >100 specimens (Fig. 5). There was a positive correlation between the number of individuals in
a sample and the number of BINs unique to it (R? = 0.69, p = 0.003, Fig. 6), reinforcing the prevalence

of rare BINs and the effort required to discover them.

Species Richness and Turnover

Species richness extrapolation based on the (Preston) log-normal species distribution indicated that
complete sampling of the Malaise-trappable arthropod fauna at this site in Point Pelee would reveal
about 5,700 BINs, roughly double the observed number (Fig. 7). A similar result (6,161 BINs) was
obtained when the analysis was repeated with the specimen totals for the three excluded BINs (see
above). BIN accumulation curves based on Chao 2 suggested a lower count with an estimate of
3,836 (SE + 133) BINs based on specimens (Fig. 8a) and 3,889 (SE + 125) based on samples (Fig.

8b). These three estimators suggest the site inventory is roughly 36.6-58.8% complete.

Individual samples contained an average of 458 BINs, but their similarity was low (mean shared
BINs = 0.33; mean Jaccard index = 0.16) (Table S4). The proportion of shared BINs (for adjacent
and non-adjacent weekly samples) increased as the season progressed (Fig. 9a) and decreased
with the interval between samples (R? = 0.52, p << 0.001, Fig. 9b) with similarity values (Jaccard
index) halved in 81.1 days. For example, only 99 BINs were shared between weeks 1 and 19,
samples that contained 461 and 486 BINs, respectively. By comparison, samples from weeks 7 and

9 (containing 641 and 619 BINs respectively) shared 266 BINs.
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Taxon Diversity and Abundance

The Cecidomyiidae (351), Ichneumonidae (127) and Chironomidae (113) included the most BINs
while the Chironomidae (10,827), Cicadellidae (3,070), and Cecidomyiidae (1,919) were represented
by the most specimens. The most abundant BINs were BOLD:AAG2868 (Cicadellidae: Empoasca
fabae), BOLD:AAB7030 (Chironomidae: Chironomus sp.) and BOLD:AAV0161 (Cicadellidae:
Erythroneura bakeri) with 555, 446 and 431 specimens respectively. Each of these species and
many of the abundant taxa had closely-related allies, often morphologically indistinguishable and in

low frequency, making oversampling unavoidable without risking the oversight of some species.

New and Existing Inventories

Three quarters of the specimens (n = 14,313/19,071) with a sequence gained a genus- or species-
level taxonomic assignment following their comparison with records on BOLD. They represented
58.6% of all BINs (n = 1320); the other BINs were assigned to a subfamily or family. A few species
were represented by more than one BIN [e.g., Araneae: Thomisidae: Xysticus pellax was
represented by BINs BOLD:ACE4932 and BOLD:ACE4935], but most species (95.5%) showed

perfect correspondence between a single taxon name and a single BIN.

By comparison, a 40-year (1970 — 2009) inventory using morphology (Marshall et al. 2009) revealed
2,423 taxa identified to a genus- or species-level among 30,000 specimens collected from Point
Pelee and vicinity. After merging the two inventories, there were 3,217 genera/species combinations
in the checklist with just 7.8% overlap (Table S5, doi:10.5883/DS-PPNP12). The overall taxonomic
coverage includes 343 families, 597 subfamilies, 1,783 genera, 2,290 species and another 118
interim or uncertain species. While the study by Marshall et al. (2009) only examined insects, the
present study examined four classes of arthropods. Only considering insects, the present inventory
revealed more species of Trichoptera, Thysanoptera, and Psocodea. When all BINs are considered,

the present inventory was biased toward Diptera and Hymenoptera where it collected 19.8% and
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13.0% more respectively. By contrast, the diverse collecting methods employed by Marshall et al.
(2009) yielded more Coleoptera, Hemiptera and Lepidoptera (64.6%, 31.6%, 22.2%). In total, the
present effort added 780 taxonomic records to the checklist (Table S5; doi:10.5883/DS-PPNP12)

which included 523 new species, 396 new genera, 91 new subfamilies, and 86 new families.

Discussion

This paper describes the steps involved in moving from specimen collection through DNA barcode
analysis to a summary of species, their abundances and associated diversity metrics. Aside from
enabling a rapid, inexpensive assessment of terrestrial arthropod diversity, this approach aids

extension of the DNA barcode reference library.

Capturing Presence and Abundance

The current pipeline overcomes several barriers that usually constrain Malaise trap surveys of
arthropod diversity. Most importantly, DNA barcoding minimizes the time demand on taxonomic
experts by automating the identification of specimens that belong to species in the reference library
(deWaard et al. 2009, Telfer et al. 2015). As a consequence, taxonomic advice is only required when
a new BIN is encountered or when a BIN contains conflicting information. The use of BINs also
streamlines barcode workflows. For example, imaging representatives of each BIN facilitates the
detection of contamination and mis-identification, but also the assignment of taxonomy at higher
levels (e.g. Order, Family). Similarly, a carefully edited bidirectional sequence is required for each
new BIN, but a unidirectional sequence is perfectly adequate for BIN assignment since intraspecific
variation within a population is low (Bergsten et al. 2012). Sequencing error rates are also expected
to be lower than intraspecific variability, making the unidirectional BIN assignment a great option in
the vast majority of cases. For instance, two BINs of Empoasca (Hemiptera: Cicadellidae) were
represented in the Point Pelee collection by 555 (BOLD:AAG2868) and one (BOLD:ACZ4093)
specimens respectively. Just a few representatives of the abundant BIN were imaged and

bidirectionally sequenced, but every specimen could be identified by unidirectional analysis. Aside
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from allowing the strategic deployment of analytical effort, the key advantage of DNA barcoding lies
in its capacity to allow technicians with no taxonomic training to generate the species abundance
data needed for most diversity indices (Magurran 2004). As well, abundance data are valuable to
employ functional traits to quantify ecosystem processes and services (e.g., Devictor et al. 2010). In
addition, abundance data coupled with sequence information on each specimen allows genetic
diversity to be quantified (Miraldo et al. 2016), which enables follow-up examinations such as probing

the correlation between species richness and genetic diversity (Vellend 2005).

Assembly of Resources

As evidenced by our study at Point Pelee, this approach generates a taxonomic inventory, an image
library, a DNA archive, sequence data and specimens with associated collection data; information
that can be shared through diverse online portals (e.g. Telfer et al. 2015). It also expands the DNA
barcode reference library with an alternate approach that complements the analysis of legacy
specimens that is complicated by degraded DNA (Hebert et al. 2013; Prosser et al. 2016). As well,
the analysis of newly collected specimens permits supplemental investigations, such as genome
size determination (Hanner and Gregory 2007) and stable isotope analysis (Dittrich et al. 2017). The
barcode library has utility beyond species identification, including the reconstruction of community
phylogenies (e.g. Boyle and Adamowicz 2015) for studying the structure and assembly of biological
communities, as well as for flagging new species (e.g. van Nieukerken et al. 2015) and new

occurrence records (Fernandez-Triana et al. 2014).

Protocol Use and Refinements

The present method has gained wide adoption (Perez et al. 2015, www.globalMalaise.org; Zlotnick
et al. 2015; Steinke et al. 2017) and has been employed in several studies (Bukowski et al. 2015;
D’Souza et al. 2015; Kohn et al. 2015; Mazumdar et al. 2015; Aagaard et al. 2017; Geiger et al.
2016; Hebert et al. 2016; Wirta et al. 2016; Ashfaq et al. 2018; D'Souza and Hebert 2018). As of July

2018, 3.1 million specimens have now been processed using this method. Large core facilities are
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best-suited for the high-throughput execution of this method — where the front-end processing,
laboratory analysis and informatics workflows are supported under one roof. However, this detailed
protocol can also guide smaller-scale projects and facilities that can partition the workflow into

sections that can be done ‘in-house’, and those contracted out, such as the sequencing component.

This work has led to one important modification — a standard primer cocktail, C_LepFolF and
C_LepFoIR (Folmer et al. 1994; Hebert et al. 2004) that can be used for all arthropods, simplifying
consolidation and sequencing. The present protocol generates high quality barcode records for
approximately $5 a specimen with about two thirds of the cost derived from Sanger sequencing. A
substantial reduction in analytical costs can be achieved by shifting to a high-throughput sequencing
(HTS) platform that allows samples to be individually tagged and subsequently multiplexed; the CBG
has recently integrated the PacBio Sequel System for this purpose (Hebert et al. 2018). The lllumina
MiSeq and lon S5 platforms reduce sequencing costs four-fold (e.g. Shokralla et al. 2014, 2015,
Meier et al. 2016, Moriniére et al. 2016) while the Sequel System reduces them 40-fold (Hebert et
al. 2018). Although HTS platforms are frequently associated with increased error rates compared to
Sanger technology (Kircher and Kelson 2010), these rates can be reduced to a comparable level

given sufficient read depth per specimen (see Hebert et al. 2018).

A Global Terrestrial Arthropod Monitoring Network?

The deployment of an extensive network of Malaise traps is relatively inexpensive, as evidenced by
past deployments in national parks (Perez et al. 2015), schoolyards (Steinke et al. 2017), and
backyards (Zlotnick et al. 2015). Once the present approach has been integrated with HTS, the mass
samples resulting from a broad trap network will deliver accurate occurrence data while extending
the barcode reference library. By monitoring biodiversity on a massive scale, this activity would
advance each country’s capacity to deliver factually-based reports on the status of biodiversity as
required to meet the Convention on Biological Diversity’s Aichi Targets of the Strategic Plan for

Biodiversity 2011-2020 (https://www.cbd.int/sp/targets/).
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Figure Captions

Figure 1. Workflow for biodiversity monitoring through DNA barcoding.

Figure 2. Flowchart showing the success in sequence recovery from 21,194 specimens of

arthropods in ten Malaise trap samples.

Figure 3. Taxonomic breakdown of the Malaise trap samples by (a) specimens and (b) BINs.

Figure 4. The number of specimens and BINs in ten Malaise trap samples from Point Pelee

National Park. Unique BINs are those found in only one of the ten weekly samples.

Figure 5. Relative species abundance plot for the ten Malaise trap samples.

Figure 6. Relationship between the number of specimens in each of ten samples from Point Pelee

National Park and the number of BINs unique to it (R?> = 0.69, p = 0.003).

Figure 7. Preston plot with veil line and extrapolation based upon the abundance data for the taxa

represented among the 19,071 arthropods that generated a sequence.

Figure 8. BIN accumulation curves for the 19,071 arthropods from Point Pelee National Park
estimated with (a) specimens and (b) weekly samples. Grey shading indicates the 95% confidence

interval.

Figure 9. Species overlap between the ten Malaise trap samples, shown (a) in chronological order

with the size of each node proportional to the number of BINs in a sample while the width of each
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arcs reflects BIN overlap between samples. (b) as a comparison of BIN overlap with time between

samples (R? = 0.52, p << 0.001).
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Table 1. Primers used for DNA barcode analysis. For each taxonomic group, there was a single first pass primer pair (listed first) used to amplify

the 658 bp barcode region of COI and two second pass PCR primer pairs (list second and third) used to amplify two smaller, overlapping COI

fragments (307 bp and 407 bp). The listed primer was used for sequencing unless indicated by a symbol.

] Genome Downloaded from www.nrcresearchpre:
1al use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may di

Reverse Fragment
Taxonomy PCR Primer Pair Forward Primer(s) Sequence (5'-->3") Primer(s) Sequence (5'-->3') Length (bp)
Diptera, C_LepFolF/C_LepFolR LepF1 ATTCAACCAATCATAAAGATATTGG LepR1 TAAACTTCTGGATGTCCAAAAAATCA 658
Coleoptera, LCO1490 GGTCAACAAATCATAAAGATATTGG HCO02198 TAAACTTCAGGGTGACCAAAAAATCA
Arachnida, C_LepFolF/MLepR2 LepF1 ATTCAACCAATCATAAAGATATTGG MLepR2 GTTCAWCCWGTWCCWGCYCCATTTTC 307
Collembola LCO1490 GGTCAACAAATCATAAAGATATTGG - -
and small MLepF1/C_LepFolR MLepF1 GCTTTCCCACGAATAAATAATA LepR1 TAAACTTCTGGATGTCCAAAAAATCA 407
Orders - - HCO02198 TAAACTTCAGGGTGACCAAAAAATCA
Lepidoptera LepF1/LepR1 LepF1 ATTCAACCAATCATAAAGATATTGG LepR1 TAAACTTCTGGATGTCCAAAAAATCA 658
LepF1/MLepR2 LepF1 ATTCAACCAATCATAAAGATATTGG MLepR2 GTTCAWCCWGTWCCWGCYCCATTTTC 307
MLepF1/LepR1 MLepF1 GCTTTCCCACGAATAAATAATA LepR1 TAAACTTCTGGATGTCCAAAAAATCA 407
Hymenoptera LepF1/LepR1 LepF1 ATTCAACCAATCATAAAGATATTGG LepR1 TAAACTTCTGGATGTCCAAAAAATCA 658
LepF1/C_ANTMR1D LepF1 ATTCAACCAATCATAAAGATATTGG N/A ~307
RonMWASPdeg_t1/LepR1  RonMWASPdeg_t1* TGTAAAACGACGGCCAGTGGWTCWCCWGATATAKCWTTTCC LepR1 TAAACTTCTGGATGTCCAAAAAATCA 407
Hemiptera LepF2_t1/LepR1 LepF2_t1* TGTAAAACGACGGCCAGTAATCATAARGATATYGG LepR1 TAAACTTCTGGATGTCCAAAAAATCA 658
LepF2_t1/MHemR LepF2_t1* TGTAAAACGACGGCCAGTAATCATAARGATATYGG MHemR GGTGGATAAACTGTTCAWCC 307
MHemF/LepR1 MHemF GCATTYCCACGAATAAATAAYATAAG LepR1 TAAACTTCTGGATGTCCAAAAAATCA 407
* M13 tailed forward primers sequenced with M13F
T C_ANTMR1D cocktail not used in sequencing reaction
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Supplementary material

Fig. 81 Neighbor-Joining tree based on sequence divergences at COIl (K2P distance model) for

one representative of all 2,255 BINs.

Fig. S2 Image library matching the COI Neighbor-Joining tree of BIN representatives. In a few
instances, an image for the BIN representative was unavailable because the specimen was not
recovered after DNA extraction. In these cases, an image of a different representative of the same
BIN from another site was chosen, or in rare cases, from the nearest neighbor BIN (as marked

below the image).

Table S1 BOLD and GenBank accessions, as well as BIN assignments and collection details for

the 19,185 arthropods from Point Pelee National Park.

Table S2 Summary of specimens and BINs by taxonomic order.

Table S3 Summary of specimens, BINs, and BINs unique to each weekly sample.

Table S4 Jaccard similarity index and temporal distance in days between each pair of weekly

samples.

Table S5 Combined checklist of genera and species recorded at Point Pelee National Park by

morphological (Marshall et al. 2009) and DNA barcode inventories.
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Figure 1. Workflow for biodiversity monitoring through DNA barcoding.
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Figure 2. Flowchart showing the success in sequence recovery from 21,194 specimens of arthropods in ten
Malaise trap samples.
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Figure 6. Relationship between the number of specimens in each of ten samples from Point Pelee National
Park and the number of BINs unique to it (R2 = 0.69, p = 0.003).
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Figure 7. Preston plot with veil line and extrapolation based upon the abundance data for the taxa
represented among the 19,071 arthropods that generated a sequence.
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Figure 8. BIN accumulation curves for the 19,071 arthropods from Point Pelee National Park estimated with
(a) specimens and (b) weekly samples. Grey shading indicates the 95% confidence interval.
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Figure 9. Species overlap between the ten Malaise trap samples, shown (a) in chronological order with the
size of each node proportional to the number of BINs in a sample while the width of each arcs reflects BIN

overlap between samples. (b) as a comparison of BIN overlap with time between samples (R? = 0.52, p <<
0.001).

197x275mm (300 x 300 DPI)

https://mc06.manuscriptcentral.com/genome-pubs

Page 40 of 41



